МИНИСТЕРСТВО НАУКИ, ВЫСШЕГО ОБРАЗОВАНИЯ И ИННОВАЦИЙ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

ОШСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ОТДЕЛ АСПИРАНТУРЫ И ДОКТОРАНТУРЫ

«Согласован»	«Утвержден»				
	на заседании кафедры ПМИ и ГД,				
Зав. отд. Аспирантуры и докторантуры ОшГУ	протокол от сентября 2025 года.				
к.б.н., доцент: Молдалиев Ж.Т.	Зав. кафедры ПМИ и ГД ИМФТиИТ ОшГУ				
сентября 2025 года	к.т.н., доцент: Жолдошов Т.М.				

УЧЕБНАЯ ПРОГРАММА PhD ДОКТОРАНТЫ (СИЛЛАБУС)

Дисциплина: Краевые задачи для уравнений в частных производных

Направления: 510200 «Прикладная математика и информатика»

Расчет часов по учебному плану

Краевые задачи для уравнений в частных производных]	Количество				
		Ауді	иторные зап			
	Всего	Всего ауд.	Лекции	Практ.	СРД	Отчетность
1 курс, 1 сем.	150 часов 5 кред.	60	24	36	90	Экзамен

Учебная программа (силлабус) составлена на основе Государственного образовательного стандарта по специальности 510200 "Прикладная математика и информатика" для PhD докторантов.

Составитель: д.ф.-м.н., профессор

Сопуев А

Сведения о преподавателей

Лектор-преподаватель:

Сопуев Адахимжан Сопуевич — д.ф.-м.н., профессор каф. Информационных систем и программирования Института МФТиИТ ОшГУ, общий стаж работы — 49 лет, образование — высшее, закончил физико-математический факультет ОГПИ в 1975 г.

Рабочее место: 723500. Главный корпус ОшГУ, ул. Алымбек

Датка, 331, каб. 321.

Мобильный телефон: +996 553 50-00-54

E-mail: sopuev@mail.ru

Контактная информация:

Лекционные занятия проводится в Мультимедийном лекционном классе (ауд. 328), практические занятия в компьютерных классах 302, где осваиваются навыки работы с различными пакетами программ. Дежурство преподавателя проводится в аудитории 328 по понедельникам с 16^{00} до 18^{00} .

1. Цели и задачи дисциплины

Целями программы является подготовка специалистов, способных решать задачи современной науки и техники, опираясь на передовые достижения в области математики, физики и уравнений с частными производными второго и третьего порядка с двумя независимыми переменными, нахождение достаточных условий, обеспечивающие корректность изучаемых задач.

Докторанты получают знания и навыки в области разработки и использования математических методов и алгоритмов, реализованных в виде информационных технологий. Докторанты смогут изучать, интерпретировать и оптимизировать математические модели для решения научных и инженерных задач, используя современные методы решения краевых задач уравнений математической физики.

Задачи дисциплины:

- овладение навыков исследования доказательства существования решений краевых задач;
- освоение методов исследования единственности решения краевых задач;
- формировать умение применять доказательства непрерывной зависимости решений от начально-краевых условий задачи

Выпускники программы могут работать научными специалистами в области математического моделирования, аналитиками и консультантами по разработке и внедрению современных информационных технологий, а также проводить научные исследования и готовиться к преподавательской деятельности в вузах.

2. Технологическая карта

				1 мо	модуль (60 ч., 30 б.) 2 модуль (60 с., 30 б.)			Итоговый контроль (ИК) (30 б.)									
Всего		Ауд. часы	СРД	Ауд Кипя	Наборато- н рия	СРД	1 рубежный контроль (РК1)	Ау виплэП	Д Лаборато- рия	СРД	2 рубежный контроль (РК2)	Лекция	Лаборатория	СРД	Итоговый контроль (ИК	Поощрительные баллы	Всего
120)	60	60	12	18	30		12	18	30		Л	П	\mathcal{O}	2 3	∏ Ö	В
	Ба	ллы		30	30	30	30 б.	30	30	30	30 б.	30	30	20	30 б	10 б	
ТЬ	Модули и резты итоговых контролей TK=(Лек+Пр+ +CP)/3, M1=(TK1+TK2+ +ИК1)/3		-	ТК=(Лек+Пр+ +CP)/3, M2=(ТК3+ТК4+ +ИК2)/3				ИК=(Лек+Пр+ +CP)/3, Эк3=М1+М2+ИК+П				100					

Ауд. – аудитория, TK – текущий контроль, M – модули, CP – самостоятельная работа диссертанта, PK – рубежный контроль, UK – итоговый контроль, Π – поощрительный балл.

3. Тематический план лекционного занятия

No	Наименование разделов, модулей и тем					
Модуль 1						
1	Классификация уравнений в частных производных 2-го порядка с двумя независимыми переменными. Приведение к каноническому виду уравнений в частных производных 2-го порядка с двумя независимыми переменными	2				
2	Уравнение колебания струны. Общее решение. Решение задача Коши. Понятие о корректности краевой задачи.	2				
3	Решение задачи Гурса для уравнения гиперболического типа методом последовательных приближений	2				
4	Уравнение теплопроводности. Фундаментальное решение. Решение первой краевой задачи методом функции Грина	2				
5	Уравнение смешанного типа и их классификация. Задача Трикоми для уравнения смешанного параболо-гиперболического типа	2				
6	Задачи со смещением для уравнения смешанного параболо-гиперболического типа	2				
Модуль 2						
7	Задачи с нелокальными условиями для уравнения смешанного парабологиперболического типа	2				
8	Классификация уравнений в частных производных 3-го порядка с двумя независимыми переменными	2				
9	Краевые задачи для уравнений в частных производных 3-го порядка с двумя независимыми переменными	2				
10	Задачи со смещением для уравнения 3-го порядка с двумя независимыми переменными	2				
11	Задачи с нелокальными условиями 3-го порядка с двумя независимыми переменными	2				
12	Классификация уравнений в частных производных 4-го порядка с двумя независимыми переменными	2				
	Всего:	24 часа				

4. Тематический план практических занятий

Mo	№ Наименование разделов, модулей, темы и учебных вопросов	
745		
	Модуль 1	
1	Приведение к каноническому виду уравнений гиперболического типа	2
2	Приведение к каноническому виду уравнений параболического типа	2
3	Приведение к каноническому виду уравнений составного типа	2
4	Решение задачи Коши для уравнения колебания струны	2
5	Решение задачи Гурса для уравнения колебания струны	2
6	Решение задачи Дарбу для уравнения колебания струны	2
7	Доказательство корректности на примере задачи Коши	2
8	Метод разделения переменных для уравнения колебания струны	2
9	Фундаментальное решение уравнения теплопроводности	2
	Модуль 2	
10	Решение задачи Коши для уравнения теплопроводности	2
11	Функция Грина для уравнения теплопроводности	2
12	Применение метода abc при доказательство единственности решения краевых задач для уравнения теплопроводности	2
13	Задача Бицадзе-Самарского для уравнения теплопроводности	2
14	Решение уравнения теплопроводности с учетом специальной энергии	2
15	Задача Трикоми для смешанного параболо-гиперболического уравнения	2
16	Построение функции Грина первой краевой задачи для ОДУ	2
17	Сведение задачи Трикоми к решению ИУ Фредгольма 2-го рода	2
18	Решение ИУ Фредгольма 2-го рода методом резольвенты	2
	Всего:	36 часов

5. Литература

- 1. Акилов Ж.А. Нестационарные движения вязкоупругих жидкостей. Ташкент: Фан. 1982. 104 с.
- 2. Апаков Ю.П. Краевые задачи для уравнений смешанного парабологиперболического типа в трехмерных областях: Дис. ... канд. физ. мат. наук: 01.01.02. Ташкент, 1989.-115 с.
- 3. Баренблатт Г.И., Жеглов Ю.П., Кочина И.Н. Об основных представлениях теории фильтрации однородных жидкостей в трещиновых породах // Прикл. матем. и мех. 1960.- Т. 25. Вып. 5. С. 852-864.
- 4. Бердышев А.С. Краевые задачи для параболо-гиперболических уравнений: Дис. ... канд. физ.-мат. наук: 01.01.02. Ташкент, 1983. 120 с.
- 5. Бжихатов Х.Г., Нахушев А.М. Об одной краевой задаче для уравнения смешанного параболо-гиперболического типа // Доклады АН СССР. 1968. Т. 183. № 2. С. 261-264.
 - 6. Бицадзе А.В. Уравнения смешанного типа. М.: Изд-во АН СССР, 1959. 164 с.

Содержание

1. Цели и задачи дисциплины	2
2. Технологическая карта	
3. Тематический план лекционного занятия	
4. Тематический план практических занятий	
5. Литература	