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Сведения о преподавателей 

Лектор-преподаватель:  

Сопуев Адахимжан Сопуевич –  д.ф.-м.н., профессор каф. Информационных систем  

   и программирования Института МФТиИТ ОшГУ,  

общий стаж работы – 49 лет, образование – высшее, закончил  

физико-математический факультет ОГПИ в 1975 г.  

 

Рабочее место: 723500. Главный корпус ОшГУ, ул. Алымбек  

Датка, 331, каб. 321. 

Мобильный телефон: +996 553 50-00-54 

Е-mail: sopuev@mail.ru 

 

Контактная информация:  

 

Лекционные занятия проводится в Мультимедийном лекционном  

классе (ауд. 328), практические занятия в компьютерных классах 302,  

где осваиваются навыки работы с различными пакетами программ.  

Дежурство преподавателя проводится в аудитории 328  

по понедельникам с 1600 до 1800. 

 

1. Цели и задачи дисциплины 

Целями программы является подготовка специалистов, способных решать задачи со-

временной науки и техники, опираясь на передовые достижения в области математики, фи-

зики и уравнений с частными производными второго и третьего порядка с двумя независи-

мыми переменными, нахождение достаточных условий, обеспечивающие корректность изу-

чаемых задач.  

Докторанты получают знания и навыки в области разработки и использования мате-

матических методов и алгоритмов, реализованных в виде информационных технологий. 

Докторанты смогут изучать, интерпретировать и оптимизировать математические модели 

для решения научных и инженерных задач, используя современные методы решения крае-

вых задач уравнений математической физики. 

 

Задачи дисциплины: 

 овладение навыков исследования доказательства существования решений краевых 

задач; 

 освоение методов исследования единственности решения краевых задач; 

 формировать умение применять доказательства непрерывной зависимости решений 

от начально-краевых условий задачи 

 

Выпускники программы могут работать научными специалистами в области матема-

тического моделирования, аналитиками и консультантами по разработке и внедрению со-

временных информационных технологий, а также проводить научные исследования и гото-

виться к преподавательской деятельности в вузах. 

mailto:sopuev@mail.ru
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2. Технологическая карта 
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120 60 60 12 18 30 12 18 30 

Баллы 30 30 30 30 б. 30 30 30 30 б. 30 30 20  30 б 10 б 

Модули и рез-

ты итоговых 

контролей 

ТК=(Лек+Пр+ 

+СР)/3, 

М1=(ТК1+ТК2+ 

+ИК1)/3 

ТК=(Лек+Пр+ 

+СР)/3, 

М2=(ТК3+ТК4+ 

+ИК2)/3 

ИК=(Лек+Пр+ 

+СР)/3, 

Экз=М1+М2+ИК+П 

100 

 

Ауд. – аудитория, ТК – текущий контроль, М – модули, СР – самостоятельная работа 

диссертанта, РК – рубежный контроль, ИК – итоговый контроль, П – поощрительный балл. 

3. Тематический план лекционного занятия 

№ Наименование разделов, модулей и тем 
К-во 

часов 

Модуль 1 

1 

Классификация уравнений в частных производных 2-го порядка с двумя 

независимыми переменными. Приведение к каноническому виду уравнений 

в частных производных 2-го порядка с двумя независимыми переменными 

2 

2 
Уравнение колебания струны. Общее решение. Решение задача Коши. 

Понятие о корректности краевой задачи. 
2 

3 
Решение задачи Гурса для уравнения гиперболического типа методом 

последовательных приближений 
2 

4 
Уравнение теплопроводности. Фундаментальное решение. Решение первой 

краевой задачи методом функции Грина 
2 

5 
Уравнение смешанного типа и их классификация. Задача Трикоми для 

уравнения смешанного параболо-гиперболического типа 
2 

6 
Задачи со смещением для уравнения смешанного параболо-

гиперболического типа 
2 

Модуль 2 

7 
Задачи с нелокальными условиями для уравнения смешанного параболо-

гиперболического типа 
2 

8 
Классификация уравнений в частных производных 3-го порядка с двумя не-

зависимыми переменными 
2 

9 
Краевые задачи для уравнений в частных производных 3-го порядка с 

двумя независимыми переменными 
2 

10 
Задачи со смещением для уравнения 3-го порядка с двумя независимыми 

переменными 
2 

11 
Задачи с нелокальными условиями 3-го порядка с двумя независимыми 

переменными 

2 

12 
Классификация уравнений в частных производных 4-го порядка с двумя не-

зависимыми переменными 

2 

Всего: 24 часа 
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4. Тематический план практических занятий 

№ Наименование разделов, модулей, темы и учебных вопросов 
К-во  

часов 

Модуль 1 

1 Приведение к каноническому виду уравнений гиперболического типа 2 

2 Приведение к каноническому виду уравнений параболического типа 2 

3 Приведение к каноническому виду уравнений составного типа 2 

4 Решение задачи Коши для уравнения колебания струны 2 

5 Решение задачи Гурса для уравнения колебания струны 2 

6 Решение задачи Дарбу для уравнения колебания струны 2 

7 Доказательство корректности на примере задачи Коши 2 

8 Метод разделения переменных для уравнения колебания струны 2 

9 Фундаментальное решение уравнения теплопроводности 2 

Модуль 2 

10 Решение задачи Коши для уравнения теплопроводности 2 

11 Функция Грина для уравнения теплопроводности 2 

12 
Применение метода abc при доказательство единственности решения 

краевых задач для уравнения теплопроводности 
2 

13 Задача Бицадзе-Самарского для уравнения теплопроводности 2 

14 Решение уравнения теплопроводности с учетом специальной энергии 2 

15 Задача Трикоми для смешанного параболо-гиперболического уравнения 2 

16 Построение функции Грина первой краевой задачи для ОДУ 2 

17 Сведение задачи Трикоми к решению ИУ Фредгольма 2-го рода 2 

18 Решение ИУ Фредгольма 2-го рода методом резольвенты 2 

Всего: 36 часов 

5. Литература  

1. Акилов Ж.А. Нестационарные движения вязкоупругих жидкостей. - Ташкент: 

Фан, 1982. - 104 с.  

2. Апаков Ю.П. Краевые задачи для уравнений смешанного параболо-

гиперболического типа в трехмерных областях: Дис. ... канд. физ. - мат. наук: 01.01.02. - 

Ташкент, 1989. – 115 с.  

3. Баренблатт Г.И., Жеглов Ю.П., Кочина И.Н. Об основных представлениях теории 

фильтрации однородных жидкостей в трещиновых породах // Прикл. матем. и мех. - 1960.- Т. 

25. - Вып. 5. - С. 852-864.  

4. Бердышев А.С. Краевые задачи для параболо-гиперболических уравнений: Дис. ... 

канд. физ.-мат. наук: 01.01.02. - Ташкент, 1983. - 120 с.  

5. Бжихатов Х.Г., Нахушев А.М. Об одной краевой задаче для уравнения смешанно-

го параболо-гиперболического типа // Доклады АН СССР. - 1968. - Т. 183. - № 2. - С. 261-264. 

6. Бицадзе А.В. Уравнения смешанного типа. - М.: Изд-во АН СССР, 1959. - 164 с.  
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6. Критерии оценивания 

 

Оценка знаний (академической успеваемости) 

PhD докторанта 

 

30 балльная 

система 

100 балльная 

система 

Буквенная 

система 
GPA Традиционная система 

26 – 30 87 – 100 А 4,0 Отлично 

24 – 25 80 – 86 В 3,33 
Хорошо 

22 – 23 74 – 79 С 3,0 

20 – 21 68 – 73 Д 2,33 
Удовлетворительно 

18 – 19 61 – 67 Е 2,0 

9 – 17 31 –  60 FX 0 
Неудовлетворительно 

0 –  8 0 –  30 F 0 

 

 

7. Критерии оценки знаний 

Выставление оценок на экзаменах осуществляется на основе принципов 

объективности, справедливости, всестороннего анализа качества знаний маги-

странтов, и других положений, способствующих повышению надежности оцен-

ки знаний обучающихся и устранению субъективных факторов. 

В соответствии с действующими нормативными актами и рекомендация-

ми Министерства образования и науки КР устанавливаются следующие крите-

рии выставления оценок на экзаменах: 

- оценка "отлично" выставляется магистранту, который обнаружил на эк-

замене всестороннее, систематическое и глубокое знание учебно-программного 

материала, умение свободно выполнять задания, предусмотренные программой, 

который усвоил основную литературу и ознакомился с дополнительной литера-

турой, рекомендованной программой. Как правило, оценка "отлично" выстав-

ляется магистрантам, усвоившим взаимосвязь основных понятий дисциплины и 

их значений для приобретаемой профессии, проявившим творческие способно-

сти в понимании, изложении и использовании учебно-программного материала; 

- оценка "хорошо" выставляется магистранту, который на экзамене обна-

ружил полное знание учебно-программного материала, успешно выполнил 

предусмотренные в программе задания, усвоил основную литературу, рекомен-

дованную в программе. Как правило, оценка "хорошо" выставляется маги-

странтам, показавшим систематический характер знаний по дисциплине и спо-
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собным к их самостоятельному выполнению и обновлению в ходе дальнейшей 

учебной работы и профессиональной деятельности; 

- оценка "удовлетворительно" выставляется магистранту, обнаруживше-

му знание основного учебного материала в объеме, необходимом для дальней-

шей учебы и предстоящей работы по профессии, справляющемуся с выполне-

нием заданий, предусмотренных программой, который ознакомился с основной 

литературой, рекомендованной программой. Как правило, оценка "удовлетво-

рительно" выставляется магистрантам, допустившим погрешности в ответе на 

экзамене и при выполнении экзаменационных заданий, но обладающим необ-

ходимыми знаниями для их устранения под руководством преподавателя; 

- оценка "неудовлетворительно" выставляется магистранту, обнаружив-

шему пробелы в знаниях основного учебно-программного материала, допу-

стившему принципиальные ошибки в выполнении предусмотренных програм-

мой заданий, не ознакомившемуся с основной литературой, предусмотренной 

программой, и не овладевшему базовыми знаниями, предусмотренными по 

данной дисциплине и определенными соответствующей программой курса (пе-

речень основных знаний и умений, которыми должны овладеть магистранты, 

является обязательным элементом рабочей программы курса). 

 

Оценка знаний (академической успеваемости) магистранту осуществля-

ется по 100 балльной системе (шкале) следующим образом: 

 

30 балльная 

система 

100 балльная 

система 

Буквенная 

система 
GPA Традиционная система 

26 – 30 87 – 100 А 4,0 Отлично 

24 – 25 80 – 86 В 3,33 
Хорошо 

22 – 23 74 – 79 С 3,0 

20 – 21 68 – 73 Д 2,33 
Удовлетворительно 

18 – 19 61 – 67 Е 2,0 

9 – 17 31 –  60 FX 0 
Неудовлетворительно 

0 –  8 0 –  30 F 0 
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Лекции: «Краевые задачи для уравнений в частных 

производных» 

 

1. Основные понятия теории уравнений в частных производных 
 

Определение 1. Уравнение, связывающее неизвестную функцию )x(y , 

независимую переменную x  и производные от неизвестной функции, называет-

ся обыкновенным дифференциальным уравнением.  

Общий вид этого уравнения имеет вид 

0)y,...,y,y,x(F )n(  ,     (1) 

где F  - заданная функция. 

 Наивысший порядок производной, входящей в уравнение, называется по-

рядком этого уравнения. Например, линейное неоднородное обыкновенное 

дифференциальное уравнение первого порядка имеет вид 

),x(fy)x(ay       (2) 

где )x(f),x(a  - заданные функции.  

Если 0)x(f  , то уравнение (2) называется линейным однородным 

обыкновенным дифференциальным уравнением первого порядка и имеет вид 

0y)x(ay  .       (3) 

 Главная особенность обыкновенного дифференциального уравнения со-

стоит в том, что искомая функция зависит лишь от одного независимого пе-

ременного x . 

 А что будет, если искомая функция зависит от нескольких независимых 

переменных? На этот вопрос отвечает следующее определение. 

Определение 2. Уравнение, связывающее неизвестную функцию 

)x,...,x,x(u
n21

, независимые переменные 
n21

x,...,x,x  и частные производные от 

неизвестной функции, называется уравнением в частных производных.  

Общий вид уравнения в частных производных n  го имеет вид 

n1 2

n

1 2 n kk k

1 2 n 1 2 n

u u u u
F( x , x ,...,x , u, , ,..., , ) 0

x x x x x ... x

   


     
,   (4) 

где F  - заданная функция, причем 1 2 nk k ... k n    . 

Определение 3. Наивысший порядок частной производной, входящей в 

уравнение, называется порядком этого уравнения. 

Например, уравнение  

0uuu
yyxxxxyy
  

является дифференциальным уравнением 4-го порядка с двумя независимыми 

переменными. 

Общее уравнение с частными производными 1-го порядка с двумя неза-

висимыми переменными может быть записано в виде 
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0)
y

u
,

x

u
,u,y,x(F 








     (5) 

Например, уравнение  

0
y

u

x

u










     (6) 

является дифференциальным уравнением в частных производных первого по-

рядка. 

Общее уравнение с частными производными 2-го порядка с двумя неза-

висимыми переменными может быть записано в виде 

0)
y

u
,

yx

u
,

x

u
,

y

u
,

x

u
,u,y,x(F

2

22

2

2





















   (7) 

или в виде 

0)u,u,u,u,u,u,y,x(F yyxyxxyx  .   

Определение 4. Уравнение с частными производными называется квази-

линейным, если оно линейно относительно всех ее старших частных производ-

ных. 

Например, квазилинейное уравнение второго порядка с двумя независи-

мыми переменными имеет вид 

)u,u,u,y,x(F

u)u,u,u,y,x(Cu)u,u,u,y,x(Bu)u,u,u,y,x(A

yx

yyyxxyyxxxyx




  (8) 

Простейшим представителем квазилинейного уравнения второго порядка 

с двумя независимыми переменными является следующее уравнение 

0uuuyuuu)xu1(u
y

3

xyy

2

yxyxxx
 . 

Определение 5. Уравнение в частных производных называется линей-

ным, если оно линейно относительно неизвестной функции и всех ее частных 

производных. 

Общий вид линейного неоднородного уравнения в частных производных 

2-го порядка с двумя независимыми переменными x  и y  имеет вид 

),y,x(Fu)y,x(Hu)y,x(G

u)y,x(Eu)y,x(Cu)y,x(B2u)y,x(A

y

xyyxyxx




  (9) 

здесь )y,x(G),y,x(E),y,x(D),y,x(C),y,x(B),y,x(A  - коэффициенты уравне-

ния, )y,x(F  - правая часть уравнения. 

 Если 0)y,x(F  , то уравнение (9) примет вид 

0u)y,x(Hu)y,x(Gu)y,x(Eu)y,x(Cu)y,x(B2u)y,x(A
yxyyxyxx

  (10) 

Уравнение (10) называется линейным однородным уравнением в частных 

производных второго порядка с двумя независимыми переменными. 

Уравнение  

0uu
yyxx
       (11) 

является простейшим представителем линейного однородного уравнения в 

частных производных 2-го порядка с двумя независимыми переменными. 
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Пусть в области D  все коэффициенты и правая часть уравнения (9) опре-

делены.  

Определение 6. Действительная функция )y,x(u , определенная в обла-

сти D , непрерывная вместе со своими частными производными, входящими в 

уравнение (9), и обращающая его в тождество, называется регулярным реше-

нием. 

Наряду с регулярными решениями в теории уравнений в частных произ-

водных определенные значения имеют решения, перестающие в изолирован-

ных точках. К ним относятся так называемые элементарные или фундамен-

тальные решения. 

Например, функция )yxln()y,x( 22   является фундаментальным ре-

шением уравнения 

0uu
yyxx
  

так как она перестает быть регулярным в точке )0,0(O . 

Все встречающиеся в приложениях уравнения имеют целые семейства 

решений. Однако существуют уравнения, множества решений которых весьма 

узки и в некоторых случаях даже не существует. 

Например, множество действительных решений уравнения 

0uu 2

y

2

x
  

исчерпывается функцией const)y,x(u  , а уравнение 

01uu 2

y

2

x
  

вовсе не имеет действительных решений. 

Если рассмотрим обыкновенное дифференциальное уравнение n-го по-

рядка (1), то его общее решение содержит n произвольных постоянных 

.0)C,...,C,C,y,x(F
n21
  Любое частное решение получается из него, если пара-

метрам nCCC ,...,, 21  придать определенные значения. 

 Некоторые дифференциальные уравнения в частных производных допус-

кает общее решение, содержащее произвольные функции, количество которых 

равно порядку уравнения. 

 Например, общее решение уравнения (6) имеет вид 

     )yx()y,x(u  , 

где   - произвольная дифференцируемая функция. 

 Пусть дано уравнение 

      .0
yx

u2





      (12) 

Найдем его общий интеграл, т.е. функцию ),y,x(u  удовлетворяющую (12). Для 

этого сначала запишем это уравнение в виде: .0
y

u

x

















 Поскольку произ-

водная по переменной x  от величины, стоящей в скобках, равна нулю, то по-
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следняя является некоторой произвольной функцией от y : ).y(f
y

u





 Поэтому 

 .dy)y(f)x(F)y,x(u
1

 Но интеграл  dy)y(f  представляет собой некото-

рую произвольную функцию 
2F ( y ) f ( y )dy  . Таким образом, получим общее 

решение вида 

     )y(F)x(F)y,x(u
21

 ,  

которая зависит от двух произвольных функций.  

 Чтобы выделит из всей совокупности решений какое-либо частное ре-

шение, надо задать дополнительные условия. Такими дополнительными усло-

виями являются граничные и начальные условия.  

 При математическом моделировании различных физических, химических, 

биологических, технических и других явлений природы получаем дифференци-

альные уравнения в частных производных.  

Если дифференциальные уравнения в частных производных описывают 

физические процессы, то эти уравнения называются уравнениями математи-

ческой физики. 

Типичными примерами таких уравнений являются следующие уравнения: 

consta,0uua
ttxx

2   - уравнения колебания струны, 

consta,0uua
txx

2   - уравнения теплопроводности, 

0uu
yyxx
   - описывает стационарные процессы. 

Таким образом, можно дать следующую квалификационную схему для 

дифференциальных уравнений. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Дифференциальные уравнения 

Обыкновенные дифференци-

альные уравнения 

Дифференциальные уравнения 

с частными переменными 

Линейные Линейные Нелинейные Нелинейные 

Однородные Неоднородные Однородные Неоднородные 

Квалификационная схема дифференциальных уравнений 
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2. Классификация уравнений в частных производных 2-го порядка с 

двумя независимыми переменными 

 

В области D  плоскости ( , )x y  рассмотрим линейное уравнение в част-

ных производных второго порядка относительно старших производных 

)u,u,u,y,x(Fu)y,x(Cu)y,x(B2u)y,x(A
yxyyxyxx

   (1) 

Пусть в окрестности точки D)y,x(M
00
  выполняются условия 0A   или 

0B  . 

С помощью замены переменных 

)y,x(),y,x(        (2) 

уравнение (1) можем привести к каноническому виду. Если якобиан преобра-

зования (2) отличен от нуля: 0J
xyyx
  . Тогда существует обратное 

преобразование ),(yy),,(xx   . Имеем  )),(y),,(x(u)y,x(u   

),(  . Находим частные производные 

,xxxu      ,xyyu     

,2 22
xxxxxxxxxxu     

,)(2 xyxyyxyxyxyxxyu     

yyyyyyyyyyu    22 2 . 

Тогда уравнение (1) преобразуется к виду 

)u,u,u,,(Fu),(Cu),(B2u),(A
1111 

       (3) 

где 

,CB2A),(A 2

yyx

2

x1
   

,C)(BA),(B
yyyxyxxx1

   

2

yyx

2

x1
CB2A),(C   . 

 Если замену (2) выбрать так, чтобы 0C,0A
11
 , то уравнение (3) примет 

более простой вид. С этой целью рассмотрим уравнение 

0CzzBz2Az 2

yyx

2

x
       (4) 

Имеет место 

Лемма 1. Функция )y,x(z   является решением уравнения (4) тогда 

и только тогда, когда соотношение const)y,x(   представляет собой об-

щий интеграл обыкновенного дифференциального уравнения 
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0)dx(CBdydx2)dy(A 22      (5) 

Уравнение (5) называется уравнением характеристик. Алгебраическое 

уравнение 

0CB2A 2   ,     (6) 

соответствующее уравнению (5) называется характеристическим уравнением. 

Если дискриминант уравнения (6) обозначим через 

ACB 2  ,     (7) 

то дискриминант уравнения, соответствующее уравнению (3) обозначим так 

11
2
11

CAB  . 

 

Лемма 2. Имеет место соотношение 

 2

1
J       (8) 

где 
yxyx

J   .  

Если 0J  , то замена переменных (2) не является вырождающимся и 

тип уравнения в рассматриваемой области не меняется. 

Уравнение (5) распадается на два уравнения: 

A

B

dx

dy 
 ,         (9) 

A

B

dx

dy 
       (10) 

По знаку дискриминанта   можно дать следующую классификацию: 

 Если в окрестности точки ),( 00 yxM   

1) 0 , то уравнение (1) в точке ),( 00 yxM  называется уравнением 

гиперболического типа,  

2) 0 , то уравнение (1) в точке ),( 00 yxM  называется уравнением 

эллиптического типа, 

3) 0 , то уравнение (1) в точке ),( 00 yxM  называется уравнением 

параболического типа. 

 Если во всех точках области D  

1) 0 , то уравнение (1) в области D  называется уравнением гипер-

болического типа, 

2) 0 , то уравнение (1) в области D  называется уравнением эллип-

тического типа, 
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3) 0 , то уравнение (1) в области D  называется уравнением пара-

болического типа, 

4) Если в области D  знак дискриминанта   меняется, то уравнение  

(1) в области D  называется уравнением смешанного типа. 

 

Если 0y  , то 0y  . Поэтому в нижней полуплоскости уравнение 

принадлежит гиперболическому типу. 

Если 0y  , то 0y  . Поэтому в верхней полуплоскости уравнение 

принадлежит эллиптическому типу. 

Если 0y  , то 0 . Поэтому вдоль оси абсцисс уравнение принадлежит 

параболическому типу. 

Таким образом, в некоторой области D  плоскости, содержащей отрезок 

оси абсцисс, уравнение является уравнением смешанного типа. 
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3. Приведение дифференциальных уравнений в частных 

производных 2-го порядка с двумя независимыми переменными к 

каноническому виду 

 1. Приведение к каноническому виду уравнений гиперболического 
типа. Рассмотрим уравнение 

)u,u,u,y,x(Fu)y,x(Cu)y,x(B2u)y,x(A
yxyyxyxx

   (1) 

в области D  плоскости xOy . Без ограничения общности будем считать, что 

0A  . Составляем уравнение характеристик 

0)dx(CBdydx2)dy(A 22      (2) 

и характеристическое уравнение 

0CB2A 2    

Пусть во всех точках области D  дискриминант 0ACB 2  . Тогда из (2) 

имеем 

A

B

dx

dy 
 , 

A

B

dx

dy 
      (3) 

Правые части уравнений (3) действительны и различны. Интегрируя (3) по-

лучим общие интегралы: 

 






21

Cdx
)y,x(A

)y,x(B
y,Cdx

)y,x(A

)y,x(B
y


.  (4) 

Кривые (4) определяют семейства двух различных действительных характе-

ристик. Положим  







 dx
)y,x(A

)y,x(B
y)y,x(,dx

)y,x(A

)y,x(B
y)y,x(





 .  (5) 

Пусть якобиан преобразования переменных (5) отличен от нуля: 

0J
xyyx
  . Тогда существует обратное преобразование 

),(yy),,(xx   . Поэтому ),()),(y),,(x(u)y,x(u   . Нахо-

дим частные производные 

,xxxu      ,u
yyy




  

,2 22
xxxxxxxxxxu     

,)(u
xyxyyxyxyxyxxy




  

yyyyyyyyyyu    22 2 . 

Тогда уравнение (1) приводится к виду 

),,,,(),(),(2),( 1111   uuuFuCuBuA      (6) 
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где 

,CB2A),(A 2
yyx

2
x1

   

,C)(BA),(B
yyyxyxxx1

   

22
1 2),( yyxx CBAC   . 

 В силу леммы 1, имеем, что  

,0CB2A),(A 2

yyx

2

x1
   0CB2A),(C 2

yyx

2

x1
  . 

Тогда уравнение (6) примет вид 

),,,,(F),(B2
11 

   

Отсюда, будем, иметь 

1

1

1
B2

F
),,,,,(  


    (7) 

Это канонический вид гиперболического уравнения. 

 Если вести замену 

  , , 

то получим второй канонический вид уравнения 

,uu
1



   4

1
      (8) 

 Пример 1. Найдите канонический вид уравнения 

0yu2uu
xxyxx
 .     (9) 

Решение. Шаг 1. Определение типа уравнения. В данном случае 

0C,
2

1B,1A  . Дискриминант 04/101)2/1(ACB 22  . 

Следовательно, уравнение принадлежит гиперболическому типу.  

Шаг 2. Отыскание характеристик уравнения. Составляем уравнение 

характеристик: 

0dydx)dy( 2  . 

Записывая это уравнение в виде 0dy)dydx(  , получим: 0dy,0dxdy  . 

Общие интегралы этих уравнений имеют вид 
21

Cy,Cyx  . Уравнение 

имеет два семейства действительных характеристик. 

Шаг 3. Подбор замены переменных. Воспользуюсь уравнениями харак-

теристик, замена переменных подберем так  

.y,yx          (10) 

Так как 1,0,1,1
yxyx
  , то якобиан 10111J

xyyx
  .  
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Обратное преобразование имеет вид .y,x     

Шаг 4. Вычисление частных производных. Тогда  ),(u)y,x(u  . 

),(  . Найдем частные производные 

,u
xxx 

   


 
yyy

u  

,2u
xxxx

2

xxx

2

xxx 
   

,2)(u
xyxyyxyxyxyxxy 

   

Шаг 5. Преобразование уравнения. Подставляя значения частных про-

изводных в уравнение, имеем 

0)(222yu2uu
xxyxx




  

или 

0


  

Это и есть канонический вид гиперболического уравнения. 

2. Приведение к каноническому виду уравнений параболического 

типа. Пусть 0ACB 2  . Тогда уравнения (9) и (10) совпадают: 
A

B

dx

dy
 . 

Так как CAB  , то 
A

C

A

CA

dx

dy
 , то есть  

A

C

dx

dy
 .       (11) 

Пусть общий интеграл этого уравнения имеет вид Cyx ),( . Найдем 

дифференциал этого соотношения: .0dy)y,x(dx)y,x(
yx

  Отсюда 

найдем .
)y,x(

)y,x(

dx

dy

y

x




  Тогда с учетом (11) будем имеет: .

)y,x(

)y,x(

A

C

y

x




  

Следовательно, для )y,x(  имеет место соотношение  

   0)y,x(C)y,x(A
yx

  .    (12) 

Положим в этом случае 

),(),,( yxyx         (13) 

где ),( yx   - любая функция, независимая от )y,x( . Тогда, будем имеет 

 2

yx

2

yyx

2

x

2

yyx

2

x1
)CA(CCA2ACB2A),(A   

0))y,x(C)y,x(A( 2

yx
   в силу соотношения (12). Кроме того, 


yyyxyxxxyyyxyxxx1

C)(CAAC)(BA),(B 
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
yxyxxx

2

yyyxyxxx
CACA)A(C)(CAA 

 )CA()CA(C)CA(A)C(
yxyxyyxxyy

2   

0)CA(
yx
  . 

 Таким образом, 0B,0A  . Тогда уравнение (6) примет вид 

)u,u,u,,(Fu),(C
11 

    

Отсюда будем иметь канонический вид уравнения параболического типа: 

1

1

C

F
),u,u,u,,(u  


.    

 Пример 2. Найдите канонический вид уравнения 

0xuu4u4u
yyyxyxx
 .    (14) 

 Решение. Шаг 1. Определение типа уравнения. В данном случае 

4C,2B,1A  . Дискриминант 041)2(ACB 22  . Следова-

тельно, уравнение принадлежит параболическому типу.  

Шаг 2. Отыскание характеристик уравнения. Составляем уравнение 

характеристик: 0dx4dydx4dy 22  . Это уравнение можно записать в виде 

0)dx2dy( 2  . Отсюда имеем 0dydx2  . Интегрируя это уравнение, име-

ем Cyx2  . Итак, уравнение (14) имеет один двукратную действительную 

характеристику.  

Шаг 3. Подбор замены переменных. Положим x,yx2   . Так как 

0,1,1,2
yxyx
  , то 11102J

xyyx
  , то есть якобиан 

отличен от нуля. Найдем обратное преобразование:  2y,x  .  

Шаг 4. Вычисление частных производных. Имеем 

 ),2(u)y,x(u   ),(  . Найдем частные производные 

,2u
xxx 

   


 
yyy

u  

,442u
xxxx

2

xxx

2

xxx 
   

,2)(u
xyxyyxyxyxyxxy 

   

.2u
yyyy

2

yyy

2

yyy 
   

Шаг 5. Преобразование уравнения. Из уравнения (14) имеем 

044844xuu4u4u
yyyxyxx




 . 

Таким образом, приходим к следующему каноническому виду уравнения па-

раболического вида 

0


  
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3. Приведение к каноническому виду уравнений эллиптического 

типа. Пусть 0ACB 2  . Тогда правые части уравнений (3) будут ком-

плексными. Предположим, что соотношение 

C)y,x(    

представляет собой комплексный интеграл первого уравнения (3). Тогда об-

щий интеграл второго уравнения (3) имеет вид 

C)y,x(  , 

где )y,x(  - сопряженная функция относительно ),( yx . Если положим 

)y,x(),y,x(   ,     (15) 

то уравнение (1) приводится к такому же виду что и уравнения гиперболиче-

ского типа. Однако коэффициенты уравнения при этом будут комплексными. 

Чтобы не иметь дела с комплексными переменными, введем новые перемен-

ные   и  , следующим образом: 

i2
,

2

 









 . 

Тогда  i,i  . Следовательно, замена переменных (15) запи-

шется в виде 

 i,i  . 

В этом случае будем иметь 

 )CB2A()CB2A(CB2A),(A 2

yyx

2

x

2

yyx

2

x

2

yyx

2

x1


0)C)(BA(i2
yyxyyxxx
  . 

Это означает, что 0B,CA
111
 . Тогда разделив на коэффициент при 


u  по-

лучим канонический вид эллиптического уравнения. 

1
A

F
),u,u,u,,(uu  


     

 Пример 3. Найдите канонический вид уравнения 

0u32u5u2u
yyxyxx

 .    (16) 

 Решение. Шаг 1. Определение типа уравнения. В данном случае 

5C,1B,1A  . Дискриминант 0451)1(ACB 22  . Следова-

тельно, уравнение принадлежит эллиптическому типу.  

Шаг 2. Отыскание характеристик уравнения. Составляем уравнение 

характеристик: 0dx5dydx2dy 22  . Это уравнение распадается на два 

уравнения 
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i21
dx

dy
,i21

dx

dy
 . 

Общие интегралы имеют вид 

21
Cxi2yx,Cxi2yx  . 

Шаг 3. Подбор замены переменных. Замену переменных выберем сле-

дующим образом: x2,yx   . Очевидно, что 

0,2,1,1
yxyx
  . Тогда 22102J

xyyx
  . Итак, яко-

биан отличен от нуля. Найдем обратное преобразование:  2y,x  .  

Шаг 4. Вычисление частных производных. Имеем 

 )2,(u)y,x(u   ),(  . Найдем частные производные 

,2u
xxx 

   


 
yyy

u , 

,442u
xxxx

2

xxx

2

xxx 
   

,2)(u
xyxyyxyxyxyxxy 

   


 

yyyy

2

yyy

2

yyy
2u . 

Шаг 5. Преобразование уравнения. Из уравнения (16) имеем 

 


3254244u32u5u2u
yyxyxx

 

032)(4  


. Отсюда получим канонический вид эллиптического 

уравнения: 08  


. 
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x+Δx x O   

u 

Рис. 1. 

4. Задачи, приводящие к уравнениям гиперболического типа. Типы 

краевых условий. Постановка краевых задач 

4.1. Уравнение малых поперечных колебаний струны 

В математической физике под струной понимают гибкую, упругую нить. 

Примем следующие допущения:  

1). Натяжения, возникающие в струне в любой момент времени, направ-

лены по касательной к ее профилю.  

2). Пусть струна длины   в начальный момент направлена по отрезку оси 

от 0  до  .  

3). Предположим, что концы струны жестко закреплены в точках 0x   и 
x .  

Если струну отклонить от ее первоначального положения, а потом предо-

ставить самой себе или, не отклоняя положение, придать в начальный момент 

ее точкам некоторую скорость, или отклонить струну и придать ее точкам неко-

торую скорость, то точки струны будут совершать движения  говорят, что 

струна начнет колебаться. Задача заключается в определении формы струны в 

любой момент времени и определении закона движения каждой точки струны в 

зависимости от времени. 

 Будем рассматривать малые отклонения точек струны от начального по-

ложения. В силу этого можно предполагать, что движение точек струны проис-

ходит перпендикулярно оси Ox  и в одной плоскости. При этом предположении 

процесс колебания струны описывается одной функцией )t,x(u , которая дает 

величину перемещения точек струны с абсциссой x  в момент t . 
Так как мы рассматри-

ваем малые отклонения 

струны в плоскости )u,x( , то 

будем предполагать, что 

длина элемента струны 

AB  равняется ее проекции 

на ось Ox , т.е. 

.xxAB
12

  Также будем 

предполагать, что натяжение 

во всех точках струны оди-

наковое, обозначим его через T . 

 

Рассмотрим элемент струны AB . На элемент струны AB  могут действо-

вать следующие силы. 

1. Сила натяжения. На концах этого элемента, по касательным к струне, 

действует сила натяжения .T  Пусть касательные образуют с осью xO  углы   и 

.   Тогда проекция на ось uO  сил, действующих на элемент AB  будет 

равна .sinT)sin(T    Так как угол   мал, то можно положить 
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,tgsin    и мы будем иметь  

  tgT)(tgTsinT)sin(TF
íàòÿæ

.10,x
x

)t,x(u
Tx

x

)t,xx(u
T

x

)t,x(u

x

)t,xx(u
T

2

2

2

2




























 


 

2. Внешняя сила x)t,x(FF
âíåø

 . Здесь )t,x(F  означает плотность 

внешней силы. Внешняя сила )t,x(F , приложенная к струне, может произволь-

ным образом зависеть от x  и t . Например, это может быть гравитационная си-

ла mgF
ãðàâ

 .  

3. Сила сопротивления x
t

u
F

ñîïð





 . Если струна колеблется в среде, 

то возникает сила сопротивления, которая пропорциональна скорости 
t

u . 

4. Возвращающая сила xuF
âîçâð

 . Эта сила направлена противопо-

ложно смещению струны. Если смещение положительно, то сила отрицательна.  

Тогда результирующая сила имеет вид 

xux
t

u
x)t,x(Fx

x

u
TFFFFF

2

2

ñîïðãðàââíåøíàòÿæ
 









 . 

5. Сила инерции. Пусть   линейная плотность струны. Тогда масса 

элемента струны будет .xm   Ускорение элемента равно .
t

u
a

2

2




   

По второму закону Ньютона  

maF  , 

где F  - сила, действующая на тело, m  - масса тела, a  - ускорение тела. 

Следовательно, по второму закону Ньютона будем иметь  

2

2

2

2

t

u
xxux

t

u
x)t,x(Fx

x

u
T














   

Сокращая на x  и обозначая )t,x(F
1

)t,x(f,c,b,
T

a2










 , 

получаем уравнение движения колебательного процесса 

,
t

u
)t,x(fcu

t

u
b

x

u
a

2

2

2

2

2














    (1) 

Это и есть хорошо известное телеграфное уравнение. Если отсутствуют 

сила сопротивления и возвращающая сила, то из уравнения (1) получаем урав-

нение вынужденных колебаний струны: 

2

2

2

2

2

t

u
)t,x(f

x

u
a









     (2) 

Если отсутствует еще и внешняя сила, то получим уравнение свободных 

колебаний струны: 

2

2

2

2

2

t

u

x

u
a









      (3) 
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4.2. Типы краевых условий. 

Для полного определения движения струны одного уравнения недоста-

точно. Искомая функция )t,x(u  в области }ht0,x0:)y,x{(D    долж-

на удовлетворять еще граничным условиям, указывающим, что делается на 

концах струны ( 0x   и x ), и начальным условиям, описывающим состояние 

струны в начальный момент ( 0t  ). 

Запишем краевые условия, с учетом которых следует интегрировать 

уравнение (1). Пусть, например, концы струны при 0x   и x  неподвижны, 

те есть жестко закреплен. Тогда при любом t  должны выполняться равенства: 

.ht0,0)t,(u,0)t,0(u        (4) 

Если концы струны изменяется по заданному режиму (граничные усло-

вия 1-го рода), граничные условия запишется в виде: 

.ht0),t()t,(u),t()t,0(u
21

      (5) 

Эти равенства являются граничными условиями нашей задачи. 

 Если концы струны свободны, то граничные условия имеют вид 

.ht0,0)t,(u,0)t,0(u
xx

      (6) 

 Если на концах струны заданы силы (граничные условия 2-го рода), то 

граничные условия имеют вид 

.ht0),t()t,(u),t()t,0(u
2x1x

      (7) 

 При упругом закреплении (граничные условия 3-го рода), имеем 

.ht0),t()t,0(hu)t,(u),t()t,0(hu)t,0(u
2x1x

    (8) 

В начальный момент 0t   струна имеет форму, которую мы ей придали. 

Пусть эта форма описывается функцией )x(  

)x()0,x(u  .     (9) 

В начальный момент должна быть задана скорость в каждой точке стру-

ны, которая определяется функцией )x(  

)x()0,x(u
t

 .     (10) 

Условия (9) и (10) являются начальными условиями. 

4.3. Постановка краевых задач. 

 С учетом граничных и начальных условий сформулируем краевые задачи 

для уравнения колебания струны в области }ht0,x0:)y,x{(D   . 

 Первая краевая задача. Найти в области D  регулярное решение урав-

нения (1), удовлетворяющее граничным условиям 

ht0),t()t,(u),t()t,0(u
21

      (11) 

и начальным условиям 

 x0),x()0,x(u),x()0,x(u
t

 ,   (12) 

причем выполняются условия согласования 

)0()(),0()0(),0()(),0()0(
2121

   . (13) 
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 Вторая краевая задача. Найти в области D  регулярное решение урав-

нения (1), удовлетворяющее граничным условиям 

ht0),t()t,(u),t()t,0(u
2x1x

      (14) 

и начальным условиям 

 x0),x()0,x(u),x()0,x(u
t

 ,   (15) 

причем выполняются условия согласования 

).0()(),0()0(
21

        (16) 

 Третья краевая задача. Найти в области D  регулярное решение урав-

нения (1), удовлетворяющее граничным условиям 

ht0),t()y,(u)t,(u),t()y,0(u)t,0(u
22x11x

     (17) 

и начальным условиям 

 x0),x()0,x(u),x()0,x(u
t

 ,   (18) 

причем выполняются условия согласования 

).0()()(),0()0()0(
2211

      (19) 

 Если струна бесконечна, то граничный режим не влияет на колебатель-

ный процесс, и мы приходим к следующей начальной задаче. 

 Задача Коши. Найти в области 2R


 регулярное решение уравнения (1), 

удовлетворяющее граничным условиям 

начальным условиям 

 x),x()0,x(u),x()0,x(u
t

 .   (20) 

4.4. Дифференциальные уравнения электрических колебаний 

 При прохождении по проводу электрического тока вокруг него образует-

ся электромагнитное поле, которое вызывает изменения, как силы тока, так и 

величины напряжения.  

Из законов Кирхгофа получим следующую систему двух уравнений с 

частными производными первого порядка: 









,0RiLi

,0GCi

tx

tx




     (21) 

где x  координата вдоль провода, t  время, )t,x(i  распределение тока вдоль 

провода, )t,x(  распределение потенциала вдоль провода, С емкость прово-

да, G  утечка тока, R  сопротивление провода, L  индуктивность провода. 

 Если продифференцируем первое уравнение по x , а второе уравнение по 

t  и затем из найденных уравнений исключим производную 
xt

 , то получим 

следующее уравнение относительно i : 
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GRii)GLCR(CLii
tttxx
      (22) 

Это уравнение для тока, известное под названием телеграфного уравнения, 

является гиперболическим уравнением второго порядка, если 0L,0C  . 

 Напряжение описывается точно таким же уравнением: 

 GR)GLCR(CL
tttxx
 .    (23) 

Если 0RG  , то уравнения (12)-(13) упрощаются: 

CL/1a,a,iia 2

ttxx

2

ttxx

2   . 
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5. Понятия корректных краевых задач. Задача Коши. Формула Да-

ламбера.  

5.1. Понятия корректных краевых задач 

 Краевая задача, сформулированная как математическая модель, правиль-

но отражает сущность физической задачи, если она корректно поставлена.  

Краевая задача называется корректно поставленной, если выполняются 

следующие условия: 

 1). Решение задачи существует в некотором классе 1M  (условия суще-

ствования решения); 

 2). Решение задачи единственно в некотором классе 2M  (условия един-

ственности решения); 

 3). Решение задачи непрерывно зависит от данных задачи, то есть, ма-

лым изменениям данных соответствует малые изменения решения (условия 

устойчивости решения). 

 Задачи, удовлетворяющие вышеперечисленным требованиям, называются 

корректно поставленными по Адамару, а множество  21 MMM  назы-

вается классом корректности задачи. 

Если не выполняются, хотя бы одно из условий 1) - 3), то задача является 

некорректно поставленной. 

5.2. Задача Коши для уравнения колебания струны. Формула Далам-

бера. 

 В верхней полуплоскости }t0,x:)t,x{(R 2 


 рассмотрим 

уравнение колебания струны 

0uua
ttxx

2       (5.1) 

Задача Коши. Требуется найти в области 2R


 решение уравнения (5.1), 

удовлетворяющее начальным условиям 

 x),x()0,x(u),x()0,x(u
t

 .  (5.2) 

 Докажем, что задача Коши является корректно поставленной.  

1. Существование решения. В данном случае 1C,0B,aA 2  , то 

0a)1(a0ACB 2222  . Следовательно, уравнение (5.1) является 

уравнением гиперболического типа. 

 Запишем уравнение характеристик уравнения (5.1): 0)dx()dt(a 222  . 

Это уравнение можно записать в виде 0)dxadt)(dxadt(  . Отсюда имеем 

,0adtdx   0adtdx  . Методом интегрирования найдем семейства харак-

теристик: ,constatx   constatx  .  

Введем замену переменных 
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atx,atx   .    (5.3) 

Так как aa txtx   ,1,,1 , то якобиан отличен от нуля: 

02
1

1



 aaa

a

a
J

tx

tx




. 

Следовательно, существует обратное преобразование: 
a

tx
2

,
2

 



 . 

Тогда ),(
2

,
2

),( 









 


a
uyxu . Вычислим частные производные: 

   xxxu ,  tttu    

)()(    aaa ,  xxxxxxu    

   2 . )(( 2
   aau tttttt . Под-

ставляя значения производных в (5.1) получим канонический вид уравнения: 

0      (5.4) 

Уравнение (5.4) является вторым каноническим видом уравнения гиперболи-

ческого типа. Если интегрируем уравнение (5.4) по  , то имеем )(F1 


 . 

Далее, интегрируя по  , получим )(Fd)(F),( 21   


. Введем обо-

значение 


  d)(F)(F 11 . Тогда будем иметь )(F)(F),( 21   . Ес-

ли перейти к старым переменным по формуле (5.3), то получим общее реше-

ние уравнения (5.1): 

)atx(F)atx(F)t,x(u 11    (5.5) 

где 21 F,F  - произвольные дважды непрерывно дифференцируемые функции.  

Воспользуясь начальными условиями (5.2), найдем произвольные 

функции 21 F,F . Так как )atx(Fa)atx(Fa)t,x(u 21t  , то из (5.2) будем 

иметь 

),x()x(F)x(F)0,x(u 21     (5.6) 

)x()x(Fa)x(Fa)0,x(u
21t

 .   (5.7) 

Интегрируя уравнение (5.7), получим 

)x(aF)x(Fdt)t(
a

1
)x(F)x(F 0201

x

x

21

0

  .  (5.8) 

Из (5.6) и (5.8) определим 

)x(F
2

a
)x(F

2

1
dt)t(

a2

1
)x(

2

1
)x(F 0201

x

x

1

0

  , 



 31 

)x(F
2

a
)x(F

2

1
dt)t(

a2

1
)x(

2

1
)x(F 0201

x

x

2

0

  . 

Подставляя эти значения в (5.5), имеем 






























atx

atx

x

atx

atx

x

0201

atx

x

02

01

atx

x

21

dt)t(
a2

1

2

)atx()atx(

dt)t(
a2

1
dt)t(

a2

1
)atx(

2

1
)atx(

2

1

)x(F
2

a
)x(F

2

1
dt)t(

a2

1
)atx(

2

1
)x(F

2

a

)x(F
2

1
dt)t(

a2

1
)atx(

2

1
)atx(F)atx(F)t,x(u

0

0

0

0










 

Таким образом, решение задачи Коши имеет вид. 










atx

atx

d)(
a2

1

2

)atx()atx(
)t,x(u 


.  (5.9) 

Формула (5.9) называется формулой Даламбера. Нетрудно заметить, что если 

)R(C)x(),R(C)x( 1112   , то решение (5.9) является регулярным решени-

ем уравнения колебания струны. Таким образом, существование решения за-

дачи Коши доказано. 

2. Единственность решения задачи. Предположим, что существуют 

два решения Задачи Коши )t,x(u
1

 и )t,x(u
2

, причем )t,x(u)t,x(u
21

 . Тогда 

их разность )t,x(u)t,x(u)t,x(u
21

  будет решением однородной задачи 

Коши: 

,t0,x,0uua
ttxx

2      (5.1) 

.x,0)0,x(u,0)0,x(u
t

     (5.10) 

Умножаем уравнение (5.1) на 
t

u2 : 

0uu2uua2)uua(u2
tttxxt

2

ttxx

2

t
 .   (5.12) 

Преобразуем следующие выражения: 

 
t

2

x

2

xxt

2

xtx

2

xxt

2

xxt

2 )u(a)uu(a2uua2)uu(a2uua2   

 
t

2

tttt
)u(uu2   

Тогда тождество (5.12) запишется в виде 

t

2

t

2

x

2

xxt

2

ttxx

2

t
)uua()uua2()uua(u2   
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Перепишем это тождество на языке переменных   и  : 


)uua()uua2()uua(u2 22222    (5.13) 

На плоскости выберем произвольную точку )t,x(C  и проведем через нее ха-

рактеристики уравнения (5.1) atxa:BC,atxa:CA    до пе-

ресечения с осью абсцисс в точках: )0,atx(B),0,atx(A  . 

 Проинтегрируем тождество (5.13) по треугольнику ABC : 

 
ABC

2222

ABC

2 0dd])uua()uua2[(dd)uua(u2







  

Используя формулу Грина, будем иметь 

 
ABC

2222 0d)uua2(d)uua(



     (5.14) 

Вдоль AB  в силу условия (5.10) имеем 0)0,(u,0)0,(u  


. Поэтому 

 
AB

222 0d)]0,(u)0,(ua[ 


. Далее вдоль отрезков ,atxa:CA    

atxa:BC    имеем, что  add,add  . Тогда  

  
BC

t

0

22222 d)],atxa(u),atxa(u[ad)uuu2u[a 


  
CA

t

0

22222 d)],atxa(u),atxa(u[ad)uuu2u[a 


 

Тогда тождество примет вид 

0d)],atxa(u),atxa(u[

d)],atxa(u),atxa(u[

t

0

2

t

0

2

















 

Отсюда следует, что  

.0),atxa(u),atxa(u:AC

,0),atxa(u),atxa(u:BC













 (5.15) 

На вершине треугольника ABC , то есть при t  из (5.15) имеем, что  

.0)t,x(u)t,x(u:AC,0)t,x(u)t,x(u:BC 


 

Это означает, что 0)t,x(u,0)t,x(u 


. Так как точка )t,x(C  выбрана про-

извольно, то 0)t,x(u,0)t,x(u:R)t,x(
tx

2 


. Следовательно, 

const)t,x(u:R)t,x( 2 


. Но в силу (5.10) функция 0)t,x(u  , откуда сле-

дует, что 0)t,x(u:R)t,x( 2 


. Это означает, что решение задачи Коши 

единственно. 
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3. Устойчивость решения задачи. Пусть )t,x(u
1

 и )t,x(u
2

 являются ре-

шениями задачи Коши: 

.x),x()0,x(u),x()0,x(u

,t0,x,0uua

1t1

tt1xx1

2






 

,t0,x,0uua
tt2xx2

2   

.x),x()0,x(u),x()0,x(u
2t22

   

Докажем, что 0)(0    из неравенства 

  )x()x(,)x()x(
2121

 следует неравенство  

    )t,x(u)t,x(u
21

.    (5.11) 

В самом деле  )atx()atx(
2

1
)t,x(u)t,x(u

2121
  

 








atx

atx

atx

atx

2121
ds

a2

1

2

1

2

1
ds)s()s(

a2

1
)atx()atx(

2

1
  

)t1()t1()atxatx(
a2

1
0

  .  

Если выберем )t1/(
0

  , то из предыдущего неравенства вытекает 

неравенство (5.11). Это означает, что малым изменениям данных задачи соот-

ветствует малые изменения решения, то есть решение задачи устойчиво. 
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6. Полуограниченная прямая. Решение задач методом продолжений. 

6.1. Некоторые свойства решения задачи Коши для уравнения коле-

бания струны 

Рассмотрим задачу Коши 

,R)t,x(,0uua 2
ttxx

2
     (6.1) 

1
t Rx),x()0,x(u),x()0,x(u   ,  (6.2) 

решение которого определяется по формуле Даламбера 








atx

ta-x

(t)dt
a2

1

2

at)-(xt)a(x
t) u(x, 


.   (6.3) 

Исходя из этой формулы, в зависимости от четности или нечетности начальных 

данных )x(),x(   вдоль оси 1R  относительно точки 0x   можно определить 

ряд свойств решения задачи Коши. 

1º. Если функции )x(),x(   нечетны относительно точки 0x  , то реше-

ние задачи Коши (6.1), (6.2) при 0x   обращается в нуль, то есть, 0)t,0(u  . 

Доказательство. Полагая 0x   в формуле Даламбера (6.3) имеем 








at

ta-

(t)dt
a2

1

2

(-at)t)a(
t) u(0, 


. Если учесть, что )x(  является нечетной 

функцией, то t)(at)(-a:Rt 1   . Кроме того, 0(t)dt
at

ta-




  как интеграл от 

нечетной функции )x(  относительно начало координат с симметричными 

пределами. Следовательно, 0)t,0(u  . 

2º. Если функции )x(),x(   четны относительно точки 0x  , то произ-

водная по x  решение задачи Коши (6.1), (6.2) при 0x   обращается в нуль, то 

есть, 0)t,0(u
x

 . 

Доказательство. Вычислим производную от решения задачи Коши по пе-

ременной x  и, полагая в нем 0x  , имеем 

2

(-at)t)a(

2

(-at)t)a(
t) (0,u

x

 



 .  (6.4) 

Так как )x(  является четной функцией, то выполняется равенство (x)(-x)   . 

Дифференцируя это равенство, получим (x)(-x)   . Отсюда, заменяя x  на 

at , имеем 0(-at)t)a(   . Следовательно, первое слагаемое в формуле (6.4), 

равно нулю. Если учесть, что )x(  является четной функцией, то выполняется 

равенство (x)(-x)   . Заменяя x  на at , имеем 0(-at)(at)  . Итак, второе 

слагаемое в формуле (6.4) также равно нулю. Тогда из (6.4) следует, что 

0t) (0,u
x

 . 

Эти два свойства решения задачи Коши можно использовать при решении 

ряд задач на четверть плоскости. Для этого следует продолжить периодиче-

ски начальные данные на всю числовую ось соответствующим образом. По-

этому такой метод решения задачи называется методом продолжений. 
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6.2. Первая краевая задача для полуограниченной прямой 

В четверть плоскости }t0,x0:)t,x{(R2 


 рассмотрим следу-

ющие задачи.  

Первая вспомогательная задача. Найти решение задачи: 

,R)t,x(,0uua 2

ttxx

2


      (6.5) 

 x0),x()0,x(u),x()0,x(u
t

 ,   (6.6) 

 t0,0)t,0(u .      (6.7) 

где .0)0(,0)0(    

Решение. Здесь, сразу нельзя использовать формулу Даламбера, так как 

функции )x(),x(   не определены для отрицательных значений аргумента.  

Если продолжить функции )x(),x(   нечетно для отрицательных значе-

ний x , то есть начальные данные определим следующим образом: 










,0x),x(

,0x),x(
)x(

1



  










,0x),x(

,0x),x(
)x(

1



   (6.8) 

то формула Даламбера примет вид 








atx

ta-x

1

11 (t)dt
a2

1

2

at)-(xt)a(x
t) u(x, 


.   (6.9) 

Формула (6.9) дает решение задачи (6.5) - (6.7), так как эта формула как 

формула Даламбера удовлетворяет уравнению (6.5) и (6.6). Кроме того, в силу 

свойства 1º выполняется и условие (6.7).  

 Если учесть обозначения (6.8), то из (6.9) получим решение задачи в виде: 





























atx

x-ta

atx

ta-x

.
a

x
t(t)dt,

a2

1

2

x)-(att)a(x

,
a

x
t(t)dt,

a2

1

2

at)-(xt)a(x

t) u(x,







 

Вторая вспомогательная задача. Найти решение задачи: 

,R)t,x(,0uua 2

ttxx

2


      (6.9) 

 x0,0)0,x(u,0)0,x(u
t

,    (6.10) 

 t0),t()t,0(u  .      (6.11) 

где .0)0(,0)0(    

Решение. Для решения задачи воспользуемся общим решением уравнения 

(6.9): 

)atx(F)atx(F)t,x(u
21

 ,   (6.12) 

где 
21

F,F  - произвольные дважды непрерывно дифференцируемые функции. Из 

физического соображения будем считать, что 0a  . Вычислим производную 

)atx(Fa)atx(Fa)t,x(u
21t

    (6.13) 

Воспользуясь условием (6.10) из (6.12) и (6.13) имеем: 

 x0,0)x(F)x(F,0)x(F)x(F
2121

. 

Отсюда находим, что  
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 x0,C)x(F,C)x(F
2211

.    (6.14) 

Аргумент функции 
1

F  при 0t,0x   всегда положительна, то есть 0atx  , 

поэтому из (6.14) заключаем, что 
11

C)atx(F  . Тогда формула (6.12) примет 

вид 

)atx(FC)t,x(u
21

 .   (6.15) 

Если учесть, что при 0x,
a

x
t   аргумент функции 

1
F  положительно, то есть 

0atx  . Тогда из (6.14) следует, что 
22

C)atx(F  . Следовательно, в этом 

случае формула (6.15) имеет вид: 
21

CC)t,x(u  . Отсюда, в силу первого 

условия (6.10) имеем 

.
a

x
t,0)t,x(u       (6.16) 

 В случае 
a

x
t   используем граничное условие (6.11): 

 t0),t()at(FC)t,0(u
21

 . 

Отсюда находим 0z,C)
a

z
()z(F

12
  . Полагая, atxz   получим 

0atx,C)
a

x
t()atx(F

12
  . Тогда из (6.15) имеем 

.
a

x
t),

a

x
t()t,x(u      (6.17) 

Наконец, объединяя (6.16) и (6.17) получим решение второй вспомога-

тельной задачи в виде: 
















.
a

x
t),

a

x
t(

,
a

x
t,0

)t,x(u



   (6.18) 

 
Общая первая краевая задача. Найти решение задачи: 

,R)t,x(,0uua 2

ttxx

2


      (6.19) 

 x0),x()0,x(u),x()0,x(u
t

 ,   (6.20) 

 t0),t()t,0(u  .      (6.21) 

где ).0()0(),0()0(    

В силу линейности уравнения (6.19) решение общей первой краевой зада-

чи определяется как сумма решений первой и второй вспомогательных задач: 































atx

x-ta

atx

ta-x

.
a

x
t(t)dt,

a2

1

2

x)-(att)a(x
)

a

x
t(

,
a

x
t(t)dt,

a2

1

2

at)-(xt)a(x

t) u(x,








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Граничный режим влияет только в области 
a

x
t   (см. Рис. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналогично определяется решение второй краевой задачи для полуогра-

ниченной прямой. 

Общая вторая краевая задача. Найти решение задачи: 

,R)t,x(,0uua 2

ttxx

2


       

 x0),x()0,x(u),x()0,x(u
t

 ,    

 t0),t()t,0(u
x

 .      

где ).0()0(),0()0(    

Общая смешанная краевая задача. Найти решение задачи: 

,R)t,x(,0uua 2

ttxx

2


       

 x0),x()0,x(u),x()0,x(u
t

 ,    

 t0),t()t,0(u)t,0(u
x

 .      

где ).0()0()0(),0()0()0(    

 

x 

a

x
t 

a

x
t 

a

x
t 

t 

0 

Рис. 1. 
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7. Метод разделения переменных. 

7.1. Метод разделения переменных для уравнения колебания струны 

Метод разделения переменных или метод Фурье, является одним из 

наиболее распространенных методов решения уравнений с частными произ-

водными. Изложение этого метода проведем для уравнения колебания струны 

0uua ttxx
2  .     (7.1) 

в области }t0,x0:)t,x{(D   . 

Первая краевая задача. Найти в области D  решение уравнения (7.1), 

удовлетворяющее однородным граничным условиям 

 t0,0)t,(u,0)t,0(u      (7.2) 

и начальным условиям 

 x0),x()0,x(u),x()0,x(u t  ,  (7.3) 

где )x(),x(   - заданные функции, причем выполняются условия согласования 

.0)(,0)0(,0)(,0)0(       (7.4) 

 Уравнение (7.1) линейно и однородно, поэтому сумма частных решений 

также является решением этого уравнения. Для построения частных решений 

рассмотрим следующую задачу. 

Основная вспомогательная задача. Найти в области D  решение урав-

нения (7.1), не равное тождественно нулю, удовлетворяющее однородным гра-

ничным условиям 

 t0,0)t,(u,0)t,0(u      (7.2) 

и представимое в виде произведения 

)t(T)x(X)t,x(u  ,    (7.5) 

где )x(X  - зависит только от x , а )t(T  - зависит только от t . 

 Подставляя предполагаемую форму решения (7.5) в уравнение (7.1), по-

лучим 

0)t(T)x(X)t(T)x(Xa2  .  (7.6) 

После деления на )t(T)x(Xa2
 из (7.6) имеем  

)t(Ta

)t(T

)x(X

)x(X
2





.    (7.7) 

Чтобы функция (7.5) была решением уравнения (7.1), равенство (7.7) должно 

быть выполнено тождественно, т.е. для всех значений независимых перемен-

ных  t0,x0  . Это возможно в том случае, если правая и левая части 

равенства (7.7) сохраняет постоянное значение 







)t(Ta

)t(T

)x(X

)x(X
2

    (7.8) 

где const . Знак – выбран для удобства последующих выкладок. Из соотно-

шения (7.8) получаем обыкновенные дифференциальные уравнения для опре-

деления )x(X  и )t(T : 
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0)t(Ta)t(T,0)x(X)x(X 2   . 

Граничные условия дают  

0)(X)t,(u,0)0(X)t,0(u   . 

Отсюда следует, что функция )x(X  должна удовлетворять дополнительным 

условиям 

0)(X,0)0(X   , 

Так как иначе мы имели бы  

0)t(T   и 0)t,x(u  . 

Для функции )t(T  в основной вспомогательной задаче никаких дополнитель-

ных условий нет. 

Таким образом, в связи с нахождением функции )x(X  мы приходим к 

простейшей задаче о собственных значениях. 

Задача Штурма-Лиувилля. Найти те значения параметра   и соот-

ветствующие нетривиальные решения задачи: 

,0)x(X)x(X       (7.9) 

0)(X,0)0(X   .    (7.10) 

Такие значения параметра   называются собственными значениями, а 

соответствующие им нетривиальные решения – собственными функциями. 

Рассмотрим отдельно случаи, когда ,0  ,0  .0  

1°. Пусть .0  В этом случае уравнение примет вид 0)x(X  , общее 

решение которого представимо в виде 21 CxC)x(X  , где 21 C,C  - произ-

вольные постоянные. Из граничного условия 0C0C)0(X 21   следует, что 

0C2  . Тогда xC)x(X 1 . Из второго условия 0C)(X 1    имеем 0C1  . 

Следовательно, 0)x(X  . 

2°. Пусть .0  В этом случае характеристическое уравнение имеет вид 

0k 2   , корни которого действительны, различны и представимо в виде 

  21 k,k . Поэтому общее решение уравнения (7.9) имеет вид 

x
2

x
1 eCeC)x(X    . Граничные условия дают: 

0eCeC,0CC 2121     . 

Отсюда находим 0CC 21  , и, следовательно 0)x(X  . 

3°. Пусть .0  В этом случае характеристического уравнения комплекс-

но-сопряженны:  ik,ik 21  . Поэтому общее решение уравнения (7.9) 

имеет вид 

xsinCxcosC)x(X
21

  .   (7.11) 

Из первого граничного условия имеем:  )0cos(C)0(X
1

  

0C)0sin(C
12
  . Поэтому общее решение примет вид 

)xsin(C)x(X 2  . Из второго граничного условия имеем: 
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0)sin(C)(X
2

   . По условию )x(X  не равно тождественно нулю, то 

0C
2
 , поэтому 0)sin(   или ...,2,1n,

n





  . 

Следовательно, нетривиальные решения задачи (7.9)-(7.10) возможны 

лишь при значениях 

...,2,1n,
n

2

n 












  .   (7.12) 

Этим собственным значениям соответствуют собственные функции 

,...2,1n,x
n

sinC)x(X)x(X
2n





  (7.13) 

Чтобы исключить неопределенность в выборе множителя, можно подчинить 

собственные функции требованию нормировки 

1dx)x(X)x(X
0

2

n

2

 


.   (7.14) 

Тогда из условия (7.14) имеем 

    1dxx
n

sinC
0

22

2







, 

из которого находим 


2
C

2
 . Таким образом, собственные функции, удовле-

творяющее условию (7.14), имеют вид 

,...2,1n,x
n

sin
2

)x(X)x(X
n





   (7.15) 

Учитывая собственные значения (7.12) для функции )t(T)t(T n  получим 

уравнения 

    0)t(T
an

)t(T n

2

n 












,   (7.16) 

решение которого имеет вид: 

  ,...2,1n,at
n

sinBat
n

cosA)t(T
nnn





 ,  (7.17) 

где nn B,A  - произвольные постоянные. Тогда решение основной вспомогатель-

ной задачи, удовлетворяющее условию (7.2) и представимое в виде (7.5), имеет 

вид 

x
n

sinat
n

sinBat
n

cosA
2

)t,x(u)t,x(u
nnn 










 .  

В силу линейности и однородности уравнения (7.1) сумма частных решений 
















1n
nn

x
n

sinat
n

sinBat
n

cosA
2

)t,x(u



  (7.18) 

также удовлетворяет уравнению (7.1) и граничным условиям (7.2). Постоянные 

n
A  и 

n
B  определим из начальных условий (7.3): 
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


 




x0),x(x
n

sinA
2

)0,x(u
1n

n



,   (7.19) 




 




x0),x(x
n

sinaB
n2

)0,x(u
1n

nt



.  (7.20) 

Из теории рядов Фурье известно, что произвольная кусочно-непрерывная и ку-

сочно-дифференцируемая функция )x(f , заданная в промежутке  x0 , раз-

лагается в ряд Фурье 

,x
n

sinb)x(f
1n

n








    (7.21) 

где  




 0

n
d

n
sin)(f

2
b 


     (7.22) 

Согласно формул (7.21)-(7.22) из (7.21)-(7.20) имеем 








0

n
d

n
sin)(

2
A 


 , 







0

n
d

n
sin)(

2na

1
B 





. (7.23) 

Таким образом, решение первой краевой задачи (7.1)-(7.3) дается рядом (7.18), 

где 
n

A  и 
n

B  определяются формулами (7.23). 

 Теорема. Если ],0[C)x( 2  , имеет кусочно-непрерывную третью 

производную и удовлетворяет условиям 

0)()0(,0)()0(    , 

   ,0)()0(    

то функция )t,x(u , определяемая рядом (7.18), имеет непрерывные производ-

ные 2-го порядка и удовлетворяет уравнению (7.1), граничным условиям (7.2) и 

начальным условиям (7.3). При этом возможно почленное дифференцирование 

ряда (7.18) по x  и t  два раза, и полученные ряды сходятся абсолютно и равно-

мерно при  x0  и любом t . 
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8. Задачи с данными на характеристиках. Функция Римана. 

8.1. Постановка задачи Гурса. Формула Грина. 

В области }y0,x0:)y,x{(D   мы выведем интегральную 

формулу решения задачи Гурса для уравнения гиперболического типа 

)y,x(fu)y,x(cu)y,x(bu)y,x(au)u(L
yxxy

   (8.1) 

где f,c,b,a  - заданные функции. 

Задача Гурса. Найти в области D  решение уравнения (8.1), удовлетво-

ряющее граничным условиям 

,x0),x()0,x(u

,y0),y()y,0(u








    (8.2) 

где заданные функции ),0[C)x(),,0[C)y( 11   , причем выполняется 

условие согласования 

)0()0(   .     (8.3) 

 Задача Гурса часто называется характеристической задачей, так как гра-

ничные условия (8.2) задаются на характеристиках уравнения (8.1). 

 Пусть )y,x(  - произвольная функция, заданная в области D . Умножаем 

уравнение (8.1) на   и перебросим производные от u  на  : 

u)u(]u)u[(u)u()u(u)u(u
xyxyyxxxyxyyxxyyxxy

   

Чтобы обеспечить симметричность в выведенной формуле, рассмотрим также 

выражение 

u)u(]u)u[(u)u()u(u)u(u
xyyxxyyxyyxxyyxxyxy

   

Суммируя полученные выше выражения, получим 

u]u)u(
2

1
[]u)u(

2

1
[u

xyyxxxyyxy
   

Далее имеем u)a()ua(au
xxx

  , u)b()ub(bu
yyy

  , uccu   . 

Тогда имеет место тождество Лагранжа 

,]u)b()u(
2

1
[

]u)a()u(
2

1
[)(Lu)u(L

yxx

xyy









  (8.4) 

где  c)b()a()(L
yxxy


 - сопряженный дифференциальный опера-

тор. Запишем тождество (8.4) на языке переменных   и  .  

.]u)b()u(
2

1
[

]u)a()u(
2

1
[)(Lu)u(L













   (8.5) 

В плоскости O  выберем область }y0,x0:),{(D    с вершина-

ми )y,0(E),y,x(C),0,x(B),0,0(A . Здесь точка )y,x(C  выбрана произвольным 

образом (см. Рис. 1). 



 43 

 Интегрируя тождество (8.5) по области D  и с учетом формулы Грина, 

имеем 

.d]u)a()u(
2

1
[

d]u)b()u(
2

1
[dd)(Lu)u(L

DD











 


 (8.6) 

где D  - означает границы области D .  

8.2. Вычисление криво-

линейного интеграла. 

Очевидно, что  ABD  
EACEBC  . Тогда по 

свойству криволинейного ин-

теграла второго рода имеем 

 
 EACEBCABD

 

Уравнения путей интегрирова-

ния имеют вид: 
;x0,0d,0:AB    

;y0,0d,x:BC    

;x0,0d,y:EC    

;y0,0d,0:AE    

Криволинейные интегралы 

сведем к определенным интегралам, учитывая при этом граничные условия 

(8.2): 

1).   

x

0

0

AB

d|]u)b()u(
2

1
[d]u)b()u(

2

1
[ 


 

 






x

0

0

x

0
d|]u)b(|)0,(u)0,(

2

1







 

 


x

0

0
d)0,(u|)b()0,0(u)0,0(

2

1
)0,x(u)0,x(

2

1



 

 


x

0

0
.d)(|)b()0()0,0(

2

1
)x()0,x(

2

1



 

2).   

y

0

0

EA

d|]u)a()u(
2

1
[d]u)a()u(

2

1
[ 


 

 






y

0

0

y

0
d|]u)a(|),0(u),0(

2

1







 

 


y

0

0
d),0(u|)a()0,0(u)0,0(

2

1
)y,0(u)y,0(

2

1



 

 


y

0

0
.d)(|)a()0()0,0(

2

1
)y()y,0(

2

1



 

E(0,y) 
 

ξ 
 

B(x,0) 
 

Рис. 1. 

η 
 

A(0,0) 
 

C(x,y) 
 

D



 44 

3).   

y

0

x

BC

d|]u)a()u(
2

1
[d]u)a()u(

2

1
[ 


 

 






y

0

x

y

0
d|]u)a(|),x(u),x(

2

1







 

 


y

0

x
.d),x(u|)a()0,x(u)0,x(

2

1
)y,x(u)y,x(

2

1



 

Так как на отрезке BC  искомая функция не задана, поэтому выберем условия 

.y0,0),x(),x(a),x(:BC  


  (8.7) 

Если к уравнению (8.7) присоединяем начальное условие 

    1|),x(
y



 ,     (8.8) 

то решение задачи (8.7)-(8.8) однозначно определяется в виде  

  y0,dt)t,x(aexp),x(
y









  



    (8.9) 

Тогда  

).x()0,x(
2

1
)y,x(u)y,x(

2

1
d]u)a()u(

2

1
[

BC




  (8.10) 

4).   

x

0

y

CE

d|]u)b()u(
2

1
[d]u)b()u(

2

1
[ 


 

 






x

0

y

x

0
d|]u)b(|)y,(u)y,(

2

1







 

 


x

0

y
.d)y,(u|)b()y,0(u)y,0(

2

1
)y,x(u)y,x(

2

1



 

На отрезке CE  искомая функция также не задана, поэтому выберем условия 

.x0,0)y,()y,(b)y,(:CE  


  (8.11) 

Как и выше, присоединяя к уравнению (8.10) начальное условие 

1|)y,(
x



 ,     (8.12) 

найдем решение задачи (8.11)-(8.12) в виде 

x0,dt)t,x(bexp)y,(
x









  



.  (8.13) 

Тогда  

).y()y,0(
2

1
)y,x(u)y,x(

2

1
d]u)b()u(

2

1
[

CE




  (8.14) 

Используя полученные результаты из формулы (8.6) имеем 




)0()0,0(
2

1
)x()0,x(

2

1
dd)(Lu)u(L

D

  













y

0

0

x

0

0

)x()0,x(
2

1
)y,x(u)y,x(

2

1
d)(|)a(

)0()0,0(
2

1
)y()y,0(

2

1
d)(|)b(









 (8.15) 
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).y()y,0(
2

1
)y,x(u)y,x(

2

1
   

8.3. Функция Римана.  

Пусть ),(   - решение сопряженного уравнения  

0c)b()a()(L  


,   (8.16) 

удовлетворяющее условиям  

y0,dt)t,x(aexp|),(
y

x









 





,   (8.17) 

.x0,dt)t,x(bexp|),(
x

y









 





   (8.18) 

Решение задачи (8.16)-(8.18) назовем функцией Римана. Из (8.8) и (8.12) следу-

ет, что  

    1)y,x(  .      (8.19) 

В силу того, что точка )t,x(C  выбрана произвольно, естественно считать, что 

функция Римана зависит не только от переменных   и  , но и от x  и y . По-

этому ее обозначим в виде ),;y,x(   . 

 Теорема. Если Ccb,a 


, функция Римана существует. 

8.4. Представление решение задачи Гурса.  

С помощью функции Римана из (8.15) получим представление решение 

задачи Гурса 

.d),(f),;y,x(d

d)()],0;y,x(),0(a),0;y,x([

d)()]0,;y,x()0,(b)0,;y,x([

)0()0,0;y,x()x()0,x;y,x()y()y,0;y,x()y,x(u

x

0

y

0

y

0

x

0

 

























 (8.20) 

 Пример 1. Построить функции Римана в случае, когда 0cba  . 

 Решение. В этом случае задача (8.16)-(8.18) запишется в виде: 

0)(L 


      (8.21) 

y0,1|),(
x







    (8.22) 

.x0,1|),(
y







    (8.23) 

Общее решение уравнения (8.21) имеет вид 

),(f)(f),(       (8.24) 

Из условий (8.22), (8.23) имеем 

).y(f1)(f,x0,1)y(f)(f|),(

),x(f1)(f,y0,1)(f)x(f|),(

y

x

















 (8.25) 
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Тогда из (8.24) получим, что  )y(f1)x(f1)(f)(f),(   

)y(f)x(f2  . Но из (8.25) получим также равенство 1)y(f)x(f  . То-

гда 1),(  . Итак, функция Римана существует и имеет вид 

    1),;y,x(  . 

Поэтому решение задачи Гурса для уравнения  

)y,x(fu)u(L
xy
      (8.26) 

,x0),x()0,x(u

,y0),y()y,0(u








    (8.2) 

Представимо в виде 

.d),(fd)0()x()y()y,x(u
x

0

y

0

    
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9. Задачи, приводящиеся к уравнениям параболического типа. По-

становка краевых задач. 

9.1. Вывод уравнения теплопроводности. 

Рассмотрим вопрос распространения тепла в однородном стержне конеч-

ной длины  , температура которого в каждой точке x  определяется функцией 

)t,x(u  в момент времени t . Тогда функция )t,x(uu   дает закон распределения 

температуры в стержне. Выведем дифференциальное уравнение для этой функ-

ции. 

Вывод уравнения теплопроводности базируется на законе Фурье: Если 

различные части тела находятся при различной температуре, то в теле бу-

дут происходить движение тепла от более нагретых частей к менее нагре-

тым частям тела. 

Выберем ось x  (направив ее по оси стержня) так, чтобы стержень совпа-

дал с отрезком ],0[   оси x . 

 

 

 

 
Рис. 5. 

Выделим элемент стержня ]xx,x[   и составим для него уравнение 

теплового баланса, согласно которому скорость изменения количества тепла в 

рассматриваемом объеме, равна количеству тепла, поступившему в этот объем 

в единицу времени. 

 

 

 

 

 

1). Скорость изменения тепла. Скорость изменения тепла в выделенном 

элементе стержня равна 




xx

x

dx
t

)t,x(u
Sc



 , где c   теплоемкость материала 

стержня;    плотность; S   площадь поперечного сечения. Применяя к этому 

интегралу теорему о среднем, получим 

,x
t

)t,xx(u
Scdx

t

)t,x(u
Sc 1

xx

x


















 где .10
1
  

2). Количества тепла. Теперь найдем количества тепла, поступившее в 

выделенный элемент стержня за единицу времени. Известно, что количество 

тепла, протекающее через сечение S  с абсциссой x  за единицу времени, равно 

S
x

)t,x(u
k




 , где k   коэффициент теплопроводности, а S   площадь сечения. 

Поэтому искомое количество тепла равно (знак "-" означает, что тепло пере-

ходит от более нагретых точек к менее нагретым) 

o x
x xx 

Скорость изменения 

тепла = 
Количества  

тепла 



 48 

x
x

)t,xx(u
kS

x

)t,x(u

x

)t,xx(u
kS

S
x

)t,xx(u
kS

x

)t,x(u
kQ

2

2

2

1
















































 

где .10
2
  (Здесь применяется формула конечных приращений Лагранжа к 

функции 
x

)t,x(u




).  

 3). Тепловые источники. Выделение тепла может быть характеризовано 

плотностью тепловых источников )t,x(f  в точке x  в момент времени t . В ре-

зультате действия этих источников на участке стержня ]xx,x[   выделится 

количество тепла 





xx

x

32
x)t,xx(fSdx)t,x(fSQ



 . 

 Составим уравнение теплового баланса 

x)t,xx(fSx
x

)t,xx(u
kSx

t

)t,xx(u
Sc

32

2

2

1 





 








 

Разделим обе части этого уравнения на xS   (объем выделенного элемента 

стержня) и устремим x  к нулю (стягивая выделенный элемент стержня к се-

чению). Получим 

),t,x(F
x

)t,x(u
a

t

)t,x(u
2

2

2 








    (1) 

где )t,x(f
c

1
)t,x(F,

c

k
a2


 .  

Это уравнение называется уравнением теплопроводности для однородно-

го стержня. Величина  
c

k
a   называется коэффициентом температуропро-

водности.  

Если источники тепла отсутствуют, т.е. 0)t,x(F  , то уравнение тепло-

проводности принимает простой вид 

2

2

2

x

)t,x(u
a

t

)t,x(u









     (2) 

9.2. Уравнение диффузии. 

Если среда неравномерна заполнена газом, то имеет место диффузия его 

из мест с более высокой концентрацией в места с меньшей концентрацией. Это 

же явление имеет место и в растворах, если концентрация растворенного веще-

ства в объеме не постоянна. 

Процесс диффузии в трубке, заполненной пористой средой описывается 

уравнением 
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t

u
c

x

u
D

x 



















      (2) 

где D  - коэффициент диффузии, c  - коэффициент пористости.  

Уравнение (1) называется уравнением диффузии. Оно вполне аналогично 

уравнению теплопроводности. 

Если коэффициент диффузии постоянен, то уравнение диффузии прини-

мает вид 

xx

2

t
uau        (3) 

где 
c

D
a 2  .  

9.3. Математические модели начальных и граничных условий. 

Все физические процессы начинаются в некоторый момент времени. 

Начальный момент времени обычно берется нулем: 0t  . Поскольку мы стали 

следить за температурой с того момента, когда стержень обладал с постоянной 

температурой 
0

T , то имеем 

 x0,T)0,x(u
0

.     (4) 

Условие (4) называется начальным условием. 

 Если температура концов изменяется по законам )t(
1

  и )t(
2

 , то полу-

чим  

Tt0),t()t,(u),t()t,0(u
21

   .    (5) 

Условия (5) называются граничными условиями первого рода, физическим 

смыслом которого является задание температурного режима. 

 Если концы стержня теплоизолированы, то есть не проходит никакой по-

ток, то нормальная производная должна обращаться в нуль на границе. Тогда 

граничные условия имеют вид: 

Tt0,0)t,(u,0)t,0(u
xx

  .    (6) 

Условия (6) называются граничными условиями второго рода. Если концы 

стержня не теплоизолированы, то есть, задан режим теплового потока, гранич-

ные условия запишется в виде 

Tt0),t()t,(u),t()t,0(u
2x1x

      (7) 

Если на концах стержня задается температура окружающей среды (теплооб-

мен), то граничные условия имеют вид 

Tt0),t()t,(u)t,(u),t()t,0(u)t,0(u
21x11x

     (8) 

Условия (8) называются граничными условиями третьего рода. 
 

9.4. Постановка краевых задач. 

 В зависимости от граничных условий ставятся следующие корректные 

краевые задачи. 

 Первая краевая задача. Найти решение уравнения теплопроводности 

Tt0,x0,uau
xx

2

t
  , 

удовлетворяющее условиям  
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 x0),x()0,x(u  , 

Tt0),t()t,(u),t()t,0(u
21

   , 

где )t(),x(
1

  и )t(
2

  - заданные функции. 

 Вторая краевая задача. Найти решение уравнения теплопроводности 

Tt0,x0,uau
xx

2

t
  , 

удовлетворяющее условиям  

 x0),x()0,x(u  , 

Tt0),t()t,(u),t()t,0(u
2x1x

   , 

где )t(),x(
1

  и )t(
2

  - заданные функции. 

 Третья краевая задача. Найти решение уравнения теплопроводности 

Tt0,x0,uau
xx

2

t
  , 

удовлетворяющее условиям  

 x0),x()0,x(u  , 

Tt0),t()t,(u)t,(u),t()t,0(u)t,0(u
21x11x

   , 

где ,const,
21
  )t(),x(

1
  и )t(

2
  - заданные функции. 

 Если стержень бесконечна, то граничные режимы не влияют на тепловые 

процессы и корректна следующая 

 Задача Коши. Найти решение уравнения теплопроводности 

Tt0,x,uau
xx

2

t
 , 

удовлетворяющее условиям  

 x),x()0,x(u  , 

где )x(  - заданная ограниченная функция. 
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10. Принцип максимума. Теорема единственности для уравнения 

теплопроводности. 

10.1. Принцип максимума. 

В области }ht0,x0:)t,x{(D    рассмотрим уравнение  

xx
2

t uau        (10.1) 

Границы области D  обозначим  

следующим образом:  

}0t,x0:)y,x{(AB   ,  

}ht0,x:)y,x{(BB0   ,  

}ht,x0:)y,x{(BA 00   ,  

}ht0,0x:)y,x{(BB0  . 

Имеет место следующая 

Теорема 1 (Принцип 

экстремума). Если функция 

)t,x(u , определенная и непре-

рывная в замкнутой области 

D , удовлетворяет уравнению теплопроводности в точках области D , 

то максимальное и минимальное значения функции t,x(u  достигаются 

или в начальный момент, или в точках границы 0x   или x . 

Доказательство. Доказательство проведем методом от противного. 

Пусть M  означает максимальное значение )t,x(u  на отрезках AB , 0BB  

или 0AA : )}t,(umax),t,0(umax)},0,x(umaxmax{M
ht0ht0x0


 

 .  

Предположим, что в некоторой точке )y,x(C 00  ht0,x0 0    

функция )t,x(u  достигает своего максимального значения, равного 

 M)t,x(u 00 ,    (10.2) 

превышающего чем M . 

Сравним знаки левой и правой частей уравнения (10.1) в точке 

)t,x(C 00 . Так как в точке )t,x(C 00  функция достигает своего максималь-

ного значения, то 

0
x

)t,x(u
,0

x

)t,x(u
2

00
2

00 








   (10.3) 

Так как )t,x(u 0  достигает максимального значения при 0tt  , то  

0
t

)t,x(u 00 



.    (10.4) 

Сравнивая знаки правой и левой части уравнения (10.1), мы видим, что 

они различны. Однако это рассуждение еще не доказывает теоремы, так 

x0 

t0 С(x0,t0) 

A 

A0 B0 

B0 

Рис. 1 

x 

y 
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как правая и левая части могут быть равны нулю, что не влечет за собой 

противоречия. 

Для полного доказательства найдем точку )t,x(C 11 , в которой 

0
x

)t,x(u
2

11
2





 и 0

t

)t,x(u 11 



. Для этого рассмотрим вспомогатель-ную 

функцию 

   )tt(k)t,x(u)t,x( 0      (10.5) 

где k  - некоторое постоянное число. Заметим, что функция )t,x(  не яв-

ляется решением уравнения теплопроводности. Очевидно, что  

.hktk)tt(k

,M)t,x(u)t,x(

00

0000



 
 

Выберем 0k   так, чтобы kh  был меньше 
2


, то есть 

h2
k


 . Тогда мак-

симальное значение )t,x(  при 0t   или при 0x  , x  не будет пре-

восходить 
2

M


 , то есть 

2
M)t,x(


   при 0t   или 0x  , или x , (10.6) 

так как для этих аргументов первое слагаемое формулы (10.5) не превос-

ходит M , а второе - 
2


. В силу непрерывности функции )t,x(  она долж-

на в некоторой точке )t,x( 11  достигать своего максимального значения. 

Очевидно, что 

  M)t,x()t,x( 0011     (10.7) 

Поэтому 0t1   и  1x0 , так как при 0t   или при 0x  , x  имеет 

место неравенство (10.6). В точке )t,x( 11 , по аналогии с (10.3) и (10.4), 

должно быть 0
x

)t,x(
2

11
2




 
, 0

t

)t,x( 11 



.  

Из (10.5) имеем )tt(k)t,x()t,x(u 0 . Тогда  

,0
x

)t,x(

x

)t,x(u
2

11
2

2

11
2









 
0kk

t

)t,x(

t

)t,x(u 1111 







 
 

Отсюда следует, что  

0k
x

)t,x(u
a

t

)t,x(u
2

11
2

211 








, 

то есть уравнение (10.1) во внутренней точке )t,x( 11  не удовлетворяется.  

 Аналогично может быть доказана и вторая часть теоремы о мини-

мальном значении. Впрочем, это не требует отдельного доказательства, 
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так как функция uu1   имеет максимальное значение там, где u  мини-

мальное. 

 Тем самым доказано, что решение )t,x(u  уравнения теплопроводно-

сти (10.1) внутри области не может принимать значений, превосходящих 

наибольшее значение )t,x(u  на границе (то есть при  x,0x,0t ). 

10.2. Теорема единственности для уравнения теплопроводности.  

Теорема 2 (Единственность). Если две функции, )t,x(u1  и )t,x(u2  

определенные и непрерывные в замкнутой области D , удовлетворяют 

уравнению теплопроводности с начальными и краевыми условиями 

,ht0),t()t,(u)t,(u

,ht0),t()t,0(u)t,0(u

,x0),x()0,x(u)0,x(u

,D)t,x(,2,1i),t,x(f
x

u
a

t

u

221

121

21

2

i
2

2i

























  

то )t,x(u)t,x(u 21  . 

Рассмотрим функцию )t,x(u)t,x(u)t,x( 21  . Функция )t,x(  яв-

ляется решением однородного уравнения теплопроводности в этой обла-

сти D : 

.ht0,0)t,()t,0(,x0,0)0,x(

,D)t,x(,
x

a
t 2

2
2













 



 

Надо доказать, что однородное уравнение с однородными условиями 

имеет только тривиальное (то есть равное нулю) решение. Для доказа-

тельства будем использовать принцип экстремума.  

По принципу экстремума максимальное и минимальное значение функции 

)t,x(  достигается на границе при 0t  , или при 0x  , или при x . 

Однако, по условию мы имеем: 
ht0,0)t,()t,0(,x0,0)0,x(     

Поэтому 0)t,x(  , то есть )t,x(u)t,x(u 21  . Отсюда следует, что реше-

ние первой краевой задачи единственно. 

Теорема 2 доказана. 

10.3. Устойчивость решения первой краевой задачи для уравне-

ния теплопроводности.  
Из принципа экстремума вытекает 

Следствие 1. Если для двух решений уравнения теплопроводности 

)t,x(u1  и )t,x(u2  имеет место неравенство 
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 )t,x(u)t,x(u 21  для  x,0x,0t , 

то  

 )t,x(u)t,x(u 21  

тождественно, то есть имеет место для всех t,x : ht0,x0   . 

 Следствие 1 позволяет установить устойчивость решения задачи, то 

есть непрерывную зависимость решения первой краевой задачи от 

начального и граничных условий. 

В самом деле, если )t,x(u1  и )t,x(u2   решения следующих задач: 

ht0),t()t,(u

,ht0),t()t,0(u

,x0),x()0,x(u

,D)t,x(),t,x(f
x

u
a

t

u

21

11

1

2

1
2

21

























    

ht0),t()t,(u

,ht0),t()t,0(u

,x0),x()0,x(u

,D)t,x(),t,x(f
x

u
a

t

u

22

12

2

2

2
2

22





























  

и выполнены условия   )x()x( ,    )x()x( 11 , 

   )x()x( 22 , то  

 )t,x(u)t,x(u:D)t,x( 21 . 
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11. Решение первой краевой задачи для уравнения теплопроводности 

методом Фурье. 
 

Задача о распространении тепла в стержне длины   приводится к нахож-

дению решения уравнения  

)t,x(fuau xx
2

t      (11.1) 

в области }t0,x0:)t,x{(D   , удовлетворяющего начальному 

условию 

 x0),x()0,x(u     (11.2) 

и граничным условиям 

.t0),t()t,(u),t()t,0(u 21      (11.3) 

11.1. Сведение задачи к однородным граничным условиям.  

Введем замены искомой функции )t,x(u  по формуле 

)],t()t([
x

)t()t,x()t,x(u 121  


  (11.4) 

где )t,x(   новая неизвестная функция. Так как tu  

)]t()t([
x

)t()t,x( 1211  


, ,u xxxx   то функция )t,x(  удовле-

творяет уравнению: 

)t,x(fa 1xx
2

t       (11.5) 

где )]t()t([
x

)t()t,x(f)t,x(f 1211  


.  

Из (11.2) и (11.4) имеем, что  

),x()t,x( 1        (11.6) 

где )]0()0([
x

)0()x()x( 1211  


. Далее из (11.3) и (11.4) следует, 

что  
  .t0,0)t,(,0)t,0(    

Таким образом, достаточно найти решение уравнения (11.5), удовлетво-

ряющее начальному условию (11.6) и однородным граничным условиям  

.t0,0)t,(,0)t,0(      (11.7) 

11.2. Решение задачи для однородного уравнения с однородными 

граничными условиями.  

Сначала найдем решение однородного уравнения 

xx
2

t a   ,     (11.8) 

удовлетворяющее начальному условию (11.6) и однородным граничным усло-

виям (11.7).  
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Как и в случае волнового уравнения, будем искать решение уравнения 

(11.8) в виде произведения двух функций  

)t(T)x(X)t,x(  ,    (11.9) 

одна из которых зависит только от x, а другая  только от t; причем 0)x(X  и 

0)t(T  , ибо в противном случае 0)t,x(  , что невозможно: функция 0  

не удовлетворяет начальному условию (11.6), поскольку предполагается, что 

0)x(1  . 

 В силу граничных условий функция )x(X  должна обращаться в нуль на 

концах интервала ],0[  : .0)(X,0)0(X    Подставляя (11.9) в (11.8), полу-

чим )t(T)x(Xa)t(T)x(X 2   или .
)x(X

)x(X

)t(Ta

)t(T
2







 Отсюда заключаем, 

что функции )x(X и )t(T  должны быть решениями однородных линейных 

дифференциальных уравнений  

0)x(X)x(X       (11.10)  

0)t(Ta)t(T 2       (11.11) 

Ненулевые решения уравнения (11.10) существуют только при ,n   где 

,..)2,1n(
n

2

n 












 ,  причем в качестве этих решений можно взять функ-

ции ,...).2,1n(x
n

sin
2

)x(X n 



Заменяя в уравнении (11.11)   на 

n , получаем уравнение  

  .0)t(T
na

)t(T n

2

n 












  

Его общим решением будет ,eC)t(T
t

na

nn

2











 



 где nC произвольная по-

стоянная, соответствующая взятому значению n . 

 Подставляя найденные значения )x(X)x(X n  и )t(T)t(T n  в (11.9), 

получим решение уравнения (11.8) в виде 

,..)2,1n(x
n

sine
2

C)t,x(u
t

na

nn

2













 


 (11.12) 

Каждая из функций (11.12) удовлетворяет граничным условиям. Можно пока-

зать, что функция  

















1n

t
na

n x
n

sineC
2

)t,x(u

2


 


  (11.13) 

тоже является решением уравнения (11.8), удовлетворяющим граничным усло-

виям. 



 57 

 Выберем теперь коэффициенты nC  таким образом, чтобы функция 

(11.13) удовлетворяла и начальному условию (11.6). Полагая 0t   в (11.13), 
получим  







1n

n1 x
n

sinC
2

)x(



     (11.14) 

Известно, что если функция )x(f  разложима в равномерно и абсолютно 

сходящийся ряд Фурье по синусам 







1n

n x
n

sinb)x(f



.    (11.15) 

то 


 0

n .xdx
n

sin)x(f
2

b


 Сравнивая (11.14) и (11.15), видим, что 

,C
2

b nn 
  то есть 

l

0

1n ,xdx
n

sin)x(
2

C



  чем и завершается решение за-

дачи. 

11.3. Решение задачи для неоднородного уравнения.  

 Рассмотрим неоднородное уравнение теплопроводности  

)t,x(fuau xx
2

t   

с начальным условием 

0)0,x(u   

и граничными условиями 

0)t,(u,0)t,0(u   . 

 Решение задачи будем искать в виде ряда Фурье по собственным функци-

ям }x
n

{sin



: 







1n

n x
n

sin)t(u)t,x(u



. 

Представим функцию )t,x(f  в виде ряда 







1n

n x
n

sin)t(f)t,x(f



, 

где  




 0

n d
n

sin)t,(f
2

)t(f 


 . 

Тогда решение задачи представимо в виде 

 


 





































1n
n

t

0

2
2

x
n

sind)(ft(a
n

exp)t,x(u






. 
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Пример 1. Найти решение уравнения теплопроводности xx
2

t uau   при 

граничных условиях 0)t,(u,0)t,0(u    и начальном условии  
















.x
2

åñëè,x

,
2

x0åñëè,x

)0,x(u








 

Решение. Решение определяется формулой 









1n

n ,
nx

sineC
2

)t,x(u
2l

t2n22a






 где nC  вычисляется по формулам  

.dx
nx

sin)x(dx
nx

sinx
2

C
l

2
1

2
1

0

n













  





 

Вычисляя интегралы, получим: 

.
2

n
sin

n2

n
cos

n2
dx

nx
sin)x(

,
2

n
sin

n2

n
cos

n2
dx

nx
sinx

22

22l

2
1

22

222
1

0





































 

Складывая вычисленные интегралы, найдем, что .
2

n
sin

n

)2(
C

22

2
3

n






  Так как 

,0nsin   то и .0C n2   Далее имеем .
)1n2(

)1()2(
C

2

1n

2

2
3

1n2











 

Решение задачи запишется так: 

x
)1n2(

sine
)1n2(

1
)1(

)2(
)t,x(u

t
)1n2(a

2
1n

1n

2

2
3

2

222



  


















. 
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12. Задачи на бесконечной прямой. Функция Грина 

12.1. Автомодельное решение уравнения теплопроводности. 

Задача о распределении температуры в неограниченном однородном 

стержне описывается уравнением теплопроводности и начальным услови-

ем (задача Коши для уравнения теплопроводности). 

Задача Коши. В верхней полуплоскости найти решение уравнения  

02 
txx

uua ,     (10.1) 

удовлетворяющее начальному условию 

     x),x()0,x(u  .   (10.2) 

 Рассмотрим сначала частный случай начального условия в виде 










.x0,1

,0x,0
)x()0,x(u     (10.3) 

Решение задачи будем искать в виде: 

R,
t

x
z),z(f)t,x(u  


   (10.4) 

Так как x
t

z,
t

1
z

1t2x 





, то 

t

1
)z(fuxx  , )z(fz

t
ut




. 

туундуларын эсептеп (10.1) теңдемеге койсок, төмөнкү барабардык келип 

чыгат 












)z(fz

a
)z(f

t

1

t

1
)z(fz

tt

1
)z(fuua

2122txx
2 


. 

Если 
2

1
 , то: 

0)z(f
a2

z
)z(f

2
     (10.5) 

Пусть )z()z(f  , тогда из (10.5) имеем 0)z(
a2

z
)z(

2
  . Разделяя 

переменные, получим 
2a2

z

)z(

)z(d





. Интегрируя это уравнение, найдем 

0C,Cln
a4

z
)z(ln 112

2

 . Отсюда имеем RC,eC)z(
2

2

a4

z




 . Сле-

довательно,  

2

2

a4

z

Ce)z(f


 .     (10.6) 

Из (10.2) получим условия 

1)(f,0)(f     (10.7) 



 60 

Интегрируя равенство (10.6) от   до z  имеем 







z

a4 deC)(f)z(f
2

2





. Если учесть первого условия (10.7): 0)(f  , 

то 





z

a4 deC)z(f
2

2





. Если учесть второго условия (10.7): 1)(f  , то 








 



deC1)(f
2

2

a4 . Введя замену s
a2



. Тогда dsa2d,as2   . 

Поэтому предыдущее равенство примет вид 




 dseaC21
2s . Так как 






 dse
2s , то 

a2

1
C  . Таким образом, 







z

a4 de
a2

1
)z(f

2

2






. Введя замену s
a2



, получим 





a2

z

s dse
1

)z(f
2


 

Тогда в силу (10.4) получим решение задачи Коши (10.1), (10.3) в виде 





ta2

x

s dse
1

)
t

x
(f)t,x(u

2


    (10.8) 

Функция (10.8) называется автомодельным решением уравнения 

теплопроводности. 

12.2. Фундаментальное решение уравнения теплопроводности. 

Интеграл (10.8) можно записать в виде 






 
ta2

x

0

s
ta2

x

0

s
0

s dse
1

2

1
dse

1
dse

1
)t,x(u

222


 

Если введем функцию 



z

s dse
2

)z(
2


 , так называемое интегралом 

вероятности (или интегралом ошибок), то решение (10.8) запишется в ви-

де  

)]
ta2

x
(1[

2

1
)t,x(u      (10.9) 
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Производя дифференцирование, находим 

ta4

x

x

2

2

e
ta2

1
)t,x(u






    (10.10) 

Заметим, что функция (10.10) также является решением уравнения (10.1). 

Поэтому функцию  

ta4

x
2

2

e
ta2

1
)t,x(U






   (10.11) 

часто называют фундаментальным решением уравнения теплопроводно-

сти. 

12.3. Решение задачи Коши. 

С помощью фундаментального решения (10.11) решение задачи Ко-

ши представимо в виде 

.de)(
ta2

1
d)()t,x(U)t,x(u ta4

)x(
2

2











 






 (10.12) 

 В самом деле, функция (10.12) удовлетворяет уравнения теплопро-

водности, так как 0)t,x(U)t,x(Ua txx
2   .  

 Теперь докажем, что функция (10.12) удовлетворяет начальному 

условию (10.2). Для этого введем замену 

s
ta2

x



. Тогда dsta2d,sta2x   . При   имеем s , а 

при   имеем s . Поэтому интеграл можно записать в виде  











  dse)sta2x(
1

dsta)2(e)sta2x(
ta2

1
)t,x(u ss 





 

Отсюда, переходя к пределу при 0t   и учитывая формулу Пуассона име-

ем 

)x(
1

)x(dse
1

)x(dse)x(
1

)0,x(u ss 








 










. 

Это означает, что начальное условие выполняется. 

12.4. Функция Грина для бесконечной прямой. 

 Функция  

ta4

)x(
2

2

e
)t(a2

1
)t,x(U),;t,x(G










  (10.13) 

называется функцией Грина уравнения теплопроводности для бесконеч-

ной прямой.  
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Эта функция по переменным t,x  удовлетворяет уравнению тепло-

проводности  

0),;t,x(G),;t,x(Ga txx
2   , 

а по переменным  ,  удовлетворяет сопряженному уравнению теплопро-

водности 

0),;t,x(G),;t,x(Ga2    . 

Решение задачи Коши через функции Грина запишется в виде 

.d)()0,;t,x(G)t,x(u 




    (10.14) 

12.5. Функция Грина для конечного отрезка. 

 Функция для конечного отрезка ],0[  имеет вид 




































n

n

)t(a4

)n2x(

)t(a4

)n2x(
2

2

2

2

ee
)t(a2

1
),;t,x(G 












. 

Решение первой краевой задачи для уравнения теплопроводности: 

,hy0,x0,0uua txx
2    

hy0),y()y,(u),y()y,0(u 21    , 

 x0),x()0,x(u   

имеет вид 

 
t

0

2

t

0

1 d)(),;t,x(Gd)(),0;t,x(G)t,x(u     

   


0

d)()0,;t,x(G  . 
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13. Задачи, приводящие к уравнению эллиптического типа. Поста-

новка внутренних и внешних задач. 

13.1. Задачи, приводящие к уравнению эллиптического типа. 

При исследовании стационарных процессов различной физической 

природы (колебания, теплопроводность, диффузия и др.) обычно приходят 

к уравнениям эллиптического типа.  

1). Стационарное тепловое поле. Температура стационарного тепло-

вого поле удовлетворяет уравнению Лапласа 

0uuu yyxx  ,    (13.1) 

где 
2

2

2

2

yx 







  - оператор Лапласа. 

 При наличии источника тепла получаем неоднородное уравнение 

Лапласа 

)y,x(fuuu yyxx  ,   (13.2) 

которое называется уравнением Пуассона. 

2). Потенциальное течение жидкости. Рассмотрим стационарное 

течение несжимающее жидкости (плотность const ), характеризуемое 

скоростью )y,x(


. Если течение жидкости не вихревое, то скорость 

)y,x(


 является потенциальным вектором, то есть  

j
y

i
x

)y,x(grad)y,x(













 , 

где )y,x(  - скалярная функция, называемая потенциалом скорости. 

 Если отсутствуют источники, то  

0
yxyyxx

)y,x(div
2

2

2

2




















































 

или 

0
yx 2

2

2

2









 
 

Следовательно, потенциал скорости удовлетворяет уравнению 

Лапласа. 

13.2. Постановка внутренних и внешних задач. 

 Рассмотрим область D , ограниченной замкнутой кривой  . Задача 

о стационарном распределении температуры )y,x(u  внутри области D  

формулируется как следующие краевые задачи. 

 Первая внутренняя краевая задача. Найти функцию )y,x(u , удо-

влетворяющую внутри области D  уравнению 
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)y,x(fu       (13.3)  

и граничному условию 

,)y,x(),y,x(|)y,x(u 1     (13.4) 

где )y,x(1  - заданная функция. 

 Эту задачу часто называют внутренней задачей Дирихле. 

 Вторая внутренняя краевая задача. Найти функцию )y,x(u , удо-

влетворяющую внутри области D  уравнению 

)y,x(fu       (13.3) 

граничному условию 

,)y,x(),y,x(
n

)y,x(u
2 







  (13.5) 

где )y,x(2  - заданная функ- ция, 

n

u




 - производная по внешней 

нормали к кривой  . 

 Эту задачу часто назы- ва-

ют внутренней задачей Ней- ма-

на. 

 Третья внутренняя кра-

евая задача. Найти функцию 

)y,x(u , удовлетворяющую внутри области D  уравнению 

)y,x(fu       (13.3) 

граничному условию 

,)y,x(),y,x()y,x(uh
n

)y,x(u
3 
















 (13.6) 

где )y,x(2  - заданная функция, 
n

u




 - производная по внешней нормали к 

кривой  . 

 Пусть 0D  - означает внешнюю область по отношению к замкнутой 

кривой  . Если решение уравнения ищется во внешней области 0D , то 

задачи называются внешними. 

 Первая внешняя краевая задача. Найти функцию )y,x(u , удовле-

творяющую во внешней области 0D  уравнению 

)y,x(fu       (13.3) 

граничному условию 

,)y,x(),y,x(|)y,x(u 1     (13.4) 

где )y,x(1  - заданная функция. 

0  

  

x  

y  

D 
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 Эту задачу часто называют внешней задачей Дирихле. 

 Вторая внешняя краевая задача. Найти функцию )y,x(u , удовле-

творяющую во внешней области 0D  уравнению 

)y,x(fu       (13.3) 

граничному условию 

,)y,x(),y,x(
n

)y,x(u
2 







  (13.5) 

где )y,x(2  - заданная функция, 
n

u




 - производная по внешней нормали к 

кривой  . 

 Эту задачу часто называют внешней задачей Неймана. 

 Третья внешняя краевая задача. Найти функцию )y,x(u , удовле-

творяющую во внешней области D  уравнению 

)y,x(fu       (13.3) 

граничному условию 

,)y,x(),y,x()y,x(uh
n

)y,x(u
3 
















 (13.6) 

где )y,x(2  - заданная функция, 
n

u




 - производная по внутренней норма-

ли к кривой  . 
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14. Фундаментальное решение уравнения Лапласа. Гармонические 

функции и их свойства. 

14.1. Фундаментальное решение уравнения Лапласа. 

При решении ряда задач уравнение Лапласа записывают в полярной 

системе координат, определяемые по формуле  

 20,0,siny,cosx  .  (14.1) 

Тогда ),()sin,cos(u)y,x(u   . Так как    x,cosx  

  cosy,siny,sin  , то 2yxyxJ   . Если 0 , 

то замена переменных не особенна, и существует обратное преобразова-

ние, представимое в виде:  

22 yx  , 
x

y
tg      (14.2) 

Нетрудно заметить, что  

3

2

yyy3

2

xxx

x
,

y
,

y
,

x











     (14.3) 

 Если дифференцируем по x  и по y  соотношение 
x

y
tg  , имеем 

x

1

cos

1
,

x

y

cos

1
y22x2
 





. Отсюда с учетом (14.1) найдем 

3yy2y3xx2x

xy2
,

x
,

xy2
,

y











  . (14.4) 

 Воспользуясь формулой дифференцирования сложной функции име-

ем: 

xxx    , yyy    , 

33

2

4

2

32

2

xxxx
2
xxx

2
xxx

xy2yyxy
2

x

2























, 

33

2

4

2

32

2

2
yyy

2
yyy

2
yyy

xy2xxxy
2

y

2























 

Тогда 







 

11
2yyxx  

 














22

1111

















 . 
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Таким образом, уравнение Лапласа в полярной системе координат запи-

шется в виде: 

0
11

2

2

2


































 .   (14.5) 

Будем искать решение, зависящее только от  : )(w),(   . Тогда из 

(14.5) получим обыкновенное дифференциальное уравнение 

0
d

wd

d

d














. Интегрируя это уравнение по  , будем иметь 

1C
d

wd



 . Тогда 


1C

d

wd
 . Перепишем это уравнение в виде 



d
Cdw 1 . 

Отсюда после интегрирования по  , получим  

constC,C,ClnÑ)(w 2121   .  

Пусть 0С1  . Тогда это решение имеет особенности при 0  и является 

сингулярным решением уравнения Лапласа. Выбирая, 0C,1C 21   бу-

дем иметь 




1
ln),(  .     (14.6) 

Решение (14.6) называется фундаментальным решением уравнения Лапла-

са на плоскости (для двух независимых переменных). 

14.2. Гармонические функции. Условия Коши – Римана. 

Весьма общим методом решения двумерных задач для уравнения 

Лапласа является метод, использующий функции комплексного перемен-

ного. 

Пусть  
)y,x(i)y,x(u)z(fw   

- некоторая функция комплексного переменного iyxz  , причем )y,x(u  

и )y,x(  являются вещественными функциями переменных x  и y .  

 Функция )z(f  называется аналитической, если существует произ-

водная  

z

)z(f)zz(f
lim

z

w
lim

zd

wd

0z0z 













 

Приращение yixz    может стремиться к нулю многими способа-

ми. Однако, если функция )z(f  аналитическая, то предел 

)z(f
z

f
lim

0z


 




 не зависит от выбора пути. 
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 Необходимыми и достаточными условиями аналитичности функции 

являются так называемые условия Коши – Римана 











.u

,u

xy

yx




     (14.7) 

 Если функция в некоторой области D  плоскости iyxz   аналити-

ческая, то в этой области имеет производные всех порядков и разлагается 

в степенной ряд.  

 В частности, для такой функции )y,x(u  и )y,x(  имеют производ-

ные 2-го порядка по x  и y . 

 Дифференцируя первое равенство формулы (14.7) по x , а второе по 

y , получим: 

0uu yyxx   или 0u   

 Подобным же образом, меняя порядок дифференцирования, нахо-

дим: 

0yyxx   или 0  

 Таким образом, действительная и мнимая части  аналитической 

функции удовлетворяют уравнению Лапласа.  

 Обычно говорят, что )y,x(u  и )y,x( , удовлетворяющие условию 

Коши-Римана, являются сопряженными гармоническими функциями. 

Определение 1. Функция )t,x(u  называется гармонической в обла-

сти D , если она 

1) непрерывна в этой области вместе со своими производными до 2-

го порядка, 

2) удовлетворяет уравнению Лапласа. 

14.3. Интегральное представление гармонических функций.  

В области D , ограниченной замкнутой кривой  , рассмотрим урав-

нение 

)y,x(fu       (14.8) 

Пусть )D(C)y,x( 2  произвольная функция. Рассмотрим выражение 

u  и перебросим производные от   на u : 

u)uu(u)u()u(u)u(u xxxxxxxxxxxxxxxxx   , 

u)uu(u)u()u(u)u(u yyyyyyyyyyyyyyyyy   . 

Тогда  u)uu()uu(u yyyxxx   или 

yyyxxx )uu()uu(uu     (14.9) 

Интегрируя тождество (14.9) по области D  имеем 

 


 d)uu(d)uu(dd)uu(
D

  . 
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Если учесть равенства 
n

dd






  , 

n

u
dudu




   , то из преды-

дущего равенства получим формулу Грина: 

 























 ds
n

u

n
udd)uu(

D

,   (14.10) 

где 
n

u




, 

n


 - производные по направлению внешней нормали к  . 

 Теорема. Если D  - некоторая конечная область с кусочно-гладкой 

границей  , функция )D(C)D(C)y,x(u 21  , а 

22 )y()x(,
1

ln),( 


   - фундаментальное решение урав-

нения Лапласа с параметрической точкой D),(  , то имеет место 

интегральное представление 

.ddu
1

ln
2

1

ds
1

ln
n

),(u
1

ln
n

),(u

2

1
)y,x(u

D




































   (14.10) 

14.4. Принцип экстремума. 

Теорема (Принцип экстремума). Если функция )y,x(u , определенная и 

непрерывная в замкнутой области  DD , удовлетворяет уравнению 

Лапласа 0u   внутри D , то максимальные и минимальные значения 

функции )y,x(u  достигаются на границе  . 
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15. Метод функции Грина для задачи Дирихле. Принцип экстремума. 

15.1. Метод функции Грина для задачи Дирихле. 

В области D , рассмотрим задачу Дирихле для уравнения Лапласа: 

   0uuu yyxx       (14.1) 

  )y,x(),y,x(|)y,x(u    (14.2) 

Пусть )y,x(  - решение задачи Дирихле для области D  с краевым усло-

вием 

   0yyxx        (14.3) 

 |)y,x(u|)y,x(       (14.4) 

 Определение. Функция ),;y,x(G  , определяемая равенством 

),,;y,x(
1

ln),;y,x(G 


    (14.5) 

где 22 )y()x(   , называется функцией Грина. 

Функция Грина для задачи Дирихле обладает следующими свойствами. 

10. Удовлетворяет уравнению Лапласа: 

0),;y,x(G),;y,x(G)G( yyxx)y,x(   , 

0),;y,x(G),;y,x(G)G(),(    ; 

20. Обладает свойством симметрии, те есть 

)y,x;,(G),;y,x(G   ; 

30. На границе   области D обращается в нуль: 

0|),;y,x(G  . 

Из формулы (14.10) с помощью функции Грина получим решение задачи 

Дирихле в виде 

ds),(
n

),;y,x(G

2

1
)y,x(u 












   (14.6) 

Мы будем искать решение краевых задач для простейших областей мето-

дом разделения переменных. Решение краевых задач для уравнения 

Лапласа может быть найдено методом разделения переменных в случае 

некоторых простейших областей (круг, прямоугольник, шар, цилиндр и 

др.).  

15.2. Задача Дирихле для уравнения Лапласа в круге 

Найти функцию U, удовлетворяющую уравнению: 

u 0   внутри круга     (1) 

и граничному условию 
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u( R, ) ( )   на границе круга,    (2) 

где ( )   - заданная функция,   - полярный угол. 

    0uuu yyxx   

Введем полярную систему координат с началом в центре круга. 

-полярные координаты. 

Уравнение (1) в полярных координатах имеет вид 

. 
(3) 

Решим уравнение методом разделения переменных, то есть будем искать 

частное решение уравнения (1), вида 

. 

Подставляя предполагаемую форму решения в уравнение (3), получим 

 

Отсюда получим два обыкновенных дифференциальных уравнения: 

 

(4) 

(5) 

Определим знак : 

1 случай Пусть например  

Рассмотрим уравнение (5) 
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Характеристическое уравнение имеет вид 

 

-это решение не подходит, так как при изменении угла на 

величину однозначная функция должна вернуться к исходному 

значению (условие периодичности). 

Отсюда следует, что то есть является периодической 

функцией 

угла с периодом . 

2 случай Пусть , тогда 

 

-это решение подходит для уравнения (5) системы при 

условии, что A=0. 

Рассмотрим уравнение (4) системы: 

 

Пусть тогда: 
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Таким образом получаем : -решение уравнения в общем слу-

чае. 

3 случай Пусть например  

Решение уравнения (5): 

причем . 

Рассмотрим уравнение (4) системы: 

 

Функцию будем искать в виде  

Подставим в уравнение (4): 

 

 

Следовательно, - решение уравнения, где C и D –

постоянные. 

Для решения внутренней задачи надо положить , так как, если 

, то 

функция обращается в бесконечность при и не явля-

ется 

гармонической функцией внутри круга. Итак, частные решения нашей за-

дачи найдены: 

, 

-вид общего решения. 
(6) 
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Удовлетворим краевому условию: 

 

Считая, что задана как функция угла , возьмем ее разложение в ряд 

Фурье 

где 

 

Подставляя выражения для коэффициентов Фурье в формулу (6) и меняя 

порядок суммирования и интегрирования, получим 

 (8) 

Произведем следующие тождественные преобразования: 
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Подставляя полученный результат в равенство (8), получаем 

-интегральная формула, дающая 

решение задачи. 

-ядро Дирихле. 

 

3.3. Задача Дирихле для уравнения Лапласа в кольце 

Найти функцию U, удовлетворяющую уравнению  

  внутри кольца. (1) 

 

Необходимо поставить краевые условия на каждой из границ: 

  
 

(2) 

где -заданные функции, -полярный угол. 

Для простоты вычислений возьмем и  

тогда краевые условия примут вид 

  
 

(2*) 

Запишем уравнение (1) в полярных координатах 
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Решим уравнение методом разделения переменных, то есть будем искать 

решение уравнения (1) вида  

. 

Тогда уравнение (1) примет вид 

 

Отсюда получим два обыкновенных дифференциальных уравнения. 

 

(3) 

(4) 

Необходимо определить знак . В уравнении Лапласа в круге мы выясни-

ли, что и решения уравнений (3)-(4) имеет вид 

 

и при получили 

 

Общее решение имеет вид 

 

Удовлетворим краевым условиям (2*). Необходимо выяснить, какие из 

коэффициентов являются лишними. 
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Итак, получили 

 

  
 

 

3.4. Уравнение Лапласа в прямоугольнике 

Для решения уравнения Лапласа в прямоугольнике необходимо рассмот-

реть вспомогательную задачу. 

 

(1) 

(2) 

(3) 

(4) 

Условие (4) необходимо. Оно нам поможет при решении. 
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Решим уравнение (1) методом разделения переменных 

 

Уравнение (1) примет вид 

 

Отсюда получим два обыкновенных дифференциальных уравнения. 

. 

(5) 

(6) 

Необходимо определить знак . 

1 случай. Пусть  

Рассмотрим уравнение (5): 

. 

Характеристическое уравнение: 

 

Рассмотрим уравнение (6) 

. 

Характеристическое уравнение: 

 

Таким образом, 
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Удовлетворим краевым условиям (4): 

 

так как мы ищем ненулевые решения уравнения (1), тогда C+D=0, 

отсюда . 

 

Учитывая, что имеем: 

 

но тогда мы получим 

решение уравнения равное постоянной, а это не удовлетворяет условиям 

(2), (3). 

2 случай. Пусть  

Рассмотрим уравнение (6) 

. 

Характеристическое уравнение: 

 

Рассмотрим уравнение (5): 

. 

Характеристическое уравнение: 
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Удовлетворим начальному условию (4). 

 

Так как С=0 То,  

 

Если D=0, то решение тождественно равно нулю, а нам это не подходит, 

значит 

 

Запишем решение задачи в виде ряда: 

 
(7) 

Удовлетворим начальным условиям (2), (3). Подставим в выражение (7) 

начальное условие (2):  

. 

 (8) 

Удовлетворим начальному условию (3):  

 (9) 

Для нахождения коэффициентов необходимо решить систему урав-

нений (8), (9): 
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Подставив полученные коэффициенты в (7) получим решение задачи. 

Рассмотрим ненулевые краевые условия для уравнения Лапласа в 

прямоугольнике: 

 
Ищем решение задачи в виде суммы двух функций  

 

 

Задача (10) уже решен, а чтобы найти решение задачи (11) необходимо 

просто заменить соответствующие буквы и цифры в решении для V(x,t), то 

есть  
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Практические занятия 

1. Приведите к каноническому виду 

1). consta,0uua
ttxx

2  . Здесь 1C,0B,aA 2  . Тогда  2B  

0aAC 2  . 

2). consta,0uua
txx

2  . Здесь 0C,0B,aA 2  . 

3). 0uu
yyxx
 . Здесь 1C,0B,1A  . 

4). 0uyu
yyxx
 . Здесь 1C,0B,yA  . 

 

2. Найдите канонический вид уравнения 

0yu2uu
xxyxx
 . 

0xuu4u4u
yyyxyxx
 . 

0u32u5u2u
yyxyxx

 . 

 

3. Найдите канонический вид следующих уравнений 

 

 

 

4. Найдите общее решение 
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5. Решить следующие задачи 

 

 
 

 

 

6. Найдите решения следующих задач 
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7. Найдите решения следующих задач 

 

 
 

 

8. Методом интегрального преобразования Фурье найдите решения 

следующих задач 
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Задания для самостоятельной работы 
 

1. Определение положительной определенности квадратичной формы 

критерием Сильвестра.  

2. Приведение к каноническому виду квадратичной формы методом вы-

деления полного квадрата (Метод Лагранжа). 

3. Применение производных при приведении к каноническому виду квад-

ратичной формы. 

4. Алгоритм приведения к каноническому виду квадратичной формы. 

5. Характеристические формы. Уравнения характеристик. Характеристи-

ческие поверхности. 

6. Задачи, приводящиеся к волновым уравнениям. 

7. Задачи, приводящиеся к уравнениям Лапласа и Пуассона. 

8. Задачи, приводящиеся к уравнениям теплопроводности. 

9. Гармонические функции и их поведения на бесконечности.  

10. Формула Остроградского и Грина.  

11. Площадь n -мерной единичной сферы.  

12. Производная по направлению нормали. 

13. Понятия сопряженных операторов. 

14. Принцип экстремума для уравнения теплопроводности. 

15. Формула Кирхгофа и метод спуска.  

16. Свойства тепловых потенциалов.  

17. Свойства потенциалов простого и двойного слоя.  

18. Объемный потенциал и его свойства. 

19. Уравнение Гельмгольца.  

20. Принцип экстремума. 

21. Построение функции Грина.  

22. Интегральное уравнение Абеля.  

23. Гамма функция и его свойства.  

24. Функции Бесселя и их свойства.  

25. Гипергеометрические функции их свойства.  

26. Уравнение Лапласа в цилиндрической системе координат. 

27. Уравнение Лапласа в сферической системе координат. 

28. Решение уравнений в частных производных в системе Maple. 

 

 

 

 

 

 

 

 

 

 

 


