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ASYMPTOTIC EXPANSIONS

OF SOLUTIONS TO DIRICHLET PROBLEM

FOR ELLIPTIC EQUATION WITH SINGULARITIES

D.A. TURSUNOV, U.Z. ERKEBAEV

Abstract. The paper proposes an analogue of Vishik-Lyusternik-Vasileva-Imanalieva
boundary functions method for constructing a uniform asymptotic expansion of solutions
to bisingular perturbed problems. By means of this method we construct the uniform
asymptotic expansion for the solution to the Dirichlet problem for bisingular perturbed
second order elliptic equation with two independent variables in a circle. By the maximum
principle we justify formal asymptotic expansion of the solution, that is, an estimate for
the error term is established.
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1. Introduction

Various problems for elliptic equations with a small parameter at higher derivative were
studied by many authors and the literature on this issue is quite wide and well-known [1].
However, problems with a double singularity, i.e., bisingularly perturbed problems, as opposed
to singularly perturbed problems, are poorly studied. In bisingularly perturbed problems one
singularity is related with a singular dependence of the solution on a small parameter, while
the other comes from non-smooth terms in its asymptotics. In order to construct asymptotic
expansions for solutions to bisingularly perturbed problems, the method of matching asymptotic
expansions or Lomov regularization method is mostly used, since the classical boundary layer
method can not be applied directly. In the work we propose an analogue of the classical Vishik-
Lyusternik-Vasilieva-Imanaliev boundary layer method for constructing a uniform asymptotic
expansion for the solutions of bisingularly perturbed problems. By means of this method
we construct a uniform asymptotic expansion of the solution to the Dirichlet problem for a
bisingularly perturbed elliptic second order equation with two independent variables in a circle.
In the justification of the formal asymptotic expansion of solution (FAES) we apply a maximum
principle. Similar problems by this method were studied in works [3]–[5].

2. Formulation of the problem

We study the Dirichlet problem

𝜀∆𝑢(𝜌, 𝜙, 𝜀) − (1 − 𝜌)(𝜌− 𝛼)2𝑢(𝜌, 𝜙, 𝜀) = 𝑓(𝜌, 𝜙, 𝜀), (𝜌, 𝜙) ∈ 𝐷, (1)

𝑢(1, 𝜙, 𝜀) = 𝜓(𝜙, 𝜀), (2)
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where 0 < 𝜀 is a small parameter, ∆ = 𝜕2

𝜕𝜌2
+ 𝜕

𝜌𝜕𝜌
+ 𝜕2

𝜌2𝜕𝜙2 is the Laplace operator,

𝐷 = {(𝜌, 𝜙)|0 < 𝜌 < 1, 0 < 𝜙 6 2𝜋}, 𝑓(𝜌, 𝜙, 𝜀) =
+∞∑︁
𝑘=0

𝑓𝑘(𝜌, 𝜙)𝜀𝑘, 𝑓𝑘 ∈ 𝐶∞(𝐷),

𝜓(𝜙, 𝜀) =
+∞∑︁
𝑘=0

𝜓𝑘(𝜙)𝜀𝑘, 𝜓𝑘 ∈ 𝐶[0, 2𝜋], 𝛼 ∈ (0, 1), 𝑓(𝛼, 𝜙, 0) ̸= 0, 𝑓(1, 𝜙, 0) ̸= 0,

𝜓(𝜙, 𝜀), 𝑓(𝜌, 𝜙, 𝜀) are given functions, 𝑢(𝜌, 𝜙, 𝜀) is an unknown function,
∑︀+∞

𝑘=0 𝑓𝑘(𝜌, 𝜙)𝜀𝑘,∑︀+∞
𝑘=0 𝜓𝑘(𝜙)𝜀𝑘 are asymptotic series in Poincaré sense.
The solution to problem (1)-(2) exists and is unique [6]. We are interested in the asymptotic

behavior of the solution to problem (1)-(2) as 𝜀→ 0.
The first singularity is obvious: the solution of the limiting equation as 𝜀 = 0

−(1 − 𝜌)(𝜌− 𝛼)2𝑢(𝜌, 𝜙, 0) = 𝑓0(𝜌, 𝜙)

does not satisfy boundary condition (2). In order to show the second singularity, we consider
the structure of the external expansion of solution to problem (1), which we seek as

𝑈(𝜌, 𝜙, 𝜀) =
+∞∑︁
𝑘=0

𝜀𝑘𝑢𝑘(𝜌, 𝜙), 𝜀→ 0. (3)

Substituting (3) into (1) and equating the coefficients at the like powers of 𝜀, we obtain a
simple recurrent system of equations:

− (1 − 𝜌)(𝛼− 𝜌)2𝑢0(𝜌, 𝜙) = 𝑓0(𝜌, 𝜙),

(1 − 𝜌)(𝛼− 𝜌)2𝑢𝑘(𝜌, 𝜙) = ∆𝑢𝑘−1(𝜌, 𝜙) − 𝑓𝑘(𝜌, 𝜙), 𝑘 ∈ N.
This is why the external expansion of the solution to problem (1)-(2) is of the form:

𝑈(𝜌, 𝜙, 𝜀) =
1

(1 − 𝜌)(𝛼− 𝜌)2

(︂
𝐹0 + . . .+

𝜀𝑘

(1 − 𝜌)3𝑘(𝛼− 𝜌)4𝑘
𝐹𝑘 + . . .

)︂
, 𝜀→ 0,

where 𝐹𝑘(𝜌, 𝜙) = 𝐹𝑘 ∈ 𝐶∞(𝐷), 𝑘 = 0, 1, . . . .
We note that functions 𝑢𝑘(𝜌, 𝜙) have increasing singularities of the form:

𝑢𝑘(𝜌, 𝜙) = 𝑂

(︂
1

(1 − 𝜌)1+3𝑘

)︂
, 𝜌→ 1, 𝑘 = 0, 1, . . . ;

𝑢𝑘(𝜌, 𝜙) = 𝑂

(︂
1

(𝜌− 𝛼)2+4𝑘

)︂
, 𝜌→ 𝛼, 𝑘 = 0, 1, . . . .

Therefore, the considered problem is bisingularly perturbed in the terminology by A.M. Il’in [1,
2].

3. Main result

Theorem 3.1. As 𝜀→ 0, the solution of problem (1)-(2) has the asymptotic expansion:

𝑢(𝜌, 𝜙, 𝜀) =
+∞∑︁
𝑘=0

𝜀𝑘𝑣𝑘(𝜌, 𝜙) + 𝜒1(𝜌)
+∞∑︁
𝑘=−1

𝜀𝑘/3𝑤𝑘

(︂
1 − 𝜌

𝜀1/3
, 𝜙

)︂
+𝜒2(𝜌)

+∞∑︁
𝑘=−2

𝜀𝑘/4𝑞𝑘

(︂
𝜌− 𝛼

𝜀1/4
, 𝜙

)︂
, (4)

where functions 𝑣𝑘(𝜌, 𝜙), 𝑤𝑘

(︂
1 − 𝜌

𝜀1/3
, 𝜙

)︂
, 𝑞𝑘

(︂
𝜌− 𝛼

𝜀1/4
, 𝜙

)︂
are determined below, 𝜒1(𝜌), 𝜒2(𝜌) are

cut-off functions with values in [0, 1], 𝜒1, 𝜒2 ∈ 𝐶∞[0, 1], and

𝜒1(𝜌) = 1, as 1 − 𝛿 6 𝜌 6 1, and 𝜒1(𝜌) = 0 as 0 6 𝜌 6 1 − 2𝛿,

𝜒2(𝜌) = 1, as |𝜌− 𝛼| 6 𝛿, and 𝜒2(𝜌) = 0 as 2𝛿 6 |𝜌− 𝛼|,
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𝛿 ∈ (0,min{𝛼/2, (1 − 𝛼)/2}) is a sufficiently small number independent of 𝜀.

The proof consists of two parts: construction of FAES (4) and the justification of this ex-
pansion.

3.1. Construction of FAES. We seek FAES as

𝑢(𝜌, 𝜙, 𝜀) =
+∞∑︁
𝑘=0

𝜀𝑘𝑣𝑘(𝜌, 𝜙) + 𝜒1(𝜌)
+∞∑︁
𝑘=−1

𝜇𝑘𝑤𝑘(𝜏, 𝜙) + 𝜒2(𝜌)
+∞∑︁
𝑘=−2

𝜆𝑘𝑞𝑘(𝜂, 𝜙), 𝜀→ 0, (5)

where 𝜏 = (1 − 𝜌)/𝜇, 𝜇 = 𝜀1/3, 𝜂 = (𝜌− 𝛼)/𝜆, 𝜆 = 𝜀1/4.
Substituting (5) into (1), we obtain:

+∞∑︁
𝑘=0

𝜀𝑘(𝜀∆𝑣𝑘(𝜌, 𝜙) + 𝜀̃︀𝑣𝑘(𝜌, 𝜙) − (1 − 𝜌)(𝛼− 𝜌)2𝑣𝑘(𝜌, 𝜙)) =
+∞∑︁
𝑘=0

𝜀𝑘(𝑓𝑘(𝜌, 𝜙) − ℎ𝑘(𝜌, 𝜙)), (6)

+∞∑︁
𝑘=−1

𝜇𝑘+1

(︂
𝜕2𝑤𝑘

𝜕𝜏 2
− 𝜇

(1 − 𝜇𝜏)

𝜕𝑤𝑘

𝜕𝜏
+

𝜇2

(1 − 𝜇𝜏)2
𝜕2𝑤𝑘

𝜕𝜙2
− 𝜏(1 − 𝛼− 𝜇𝜏)2𝑤𝑘

)︂

=
+∞∑︁
𝑘=0

ℎ1,𝑘(𝜏𝜇, 𝜙)𝜇3𝑘,

(7)

+∞∑︁
𝑘=−2

𝜆𝑘+2

(︂
𝜕2𝑞𝑘
𝜕𝜂2

+
𝜆

(𝛼 + 𝜆𝜂)

𝜕𝑞𝑘
𝜕𝜂

+
𝜆2

(𝛼 + 𝜆𝜂)2
𝜕2𝑞𝑘
𝜕𝜙2

− 𝜂2(1 − 𝛼− 𝜆𝜂)𝑞𝑘

)︂

=
+∞∑︁
𝑘=0

ℎ2,𝑘(𝜂𝜆, 𝜙)𝜆4𝑘.

(8)

The idea of our method is to introduce an unknown asymptotic series

+∞∑︁
𝑘=0

𝜀𝑘ℎ𝑘(𝜌, 𝜙) = 𝜒1(𝜌)
+∞∑︁
𝑘=0

𝜀𝑘ℎ1,𝑘(𝜌, 𝜙) + 𝜒2(𝜌)
+∞∑︁
𝑘=0

𝜀𝑘ℎ2,𝑘(𝜌, 𝜙)

in identities (6), (7), (8), while functions ̃︀𝑣𝑘(𝜌, 𝜙) in identity (6) are of the form:

̃︀𝑣𝑘(𝜌, 𝜙) = ̃︀𝑤𝑘(𝜌, 𝜙)̃︀𝜒1(𝜌) + 2
𝜕 ̃︀𝑤𝑘(𝜌, 𝜙)

𝜕𝜌
𝜒′
1(𝜌) + ̃︀𝑞𝑘(𝜌, 𝜙)̃︀𝜒2(𝜌) + 2

𝜕̃︀𝑞𝑘(𝜌, 𝜙)

𝜕𝜌
𝜒′
2(𝜌),

̃︀𝑤𝑘(𝜌, 𝜙) =
3𝑘∑︁
𝑗=0

𝑤−1+𝑗,3𝑘+1−𝑗(𝜙)

(1 − 𝜌)3𝑘+1−𝑗
, ̃︀𝑞𝑘(𝜌, 𝜙) =

4𝑘∑︁
𝑗=0

𝑞−2+𝑗,4𝑘+2−𝑗(𝜙)

(𝜌− 𝛼)4𝑘+2−𝑗
, ̃︀𝜒𝑗(𝜌) = 𝜒′′

𝑗 (𝜌) +
𝜒′
𝑗(𝜌)

𝜌
,

and functions 𝑤𝑗,𝑘(𝜙), 𝑞𝑗,𝑘(𝜙) ∈ 𝐶∞[0, 2𝜋] are determined by the asymptotic expansions:

𝑤3𝑘−𝑚(𝜏, 𝜙) =
+∞∑︁
𝑗=0

𝑤3𝑘−𝑚,3𝑗+𝑚(𝜙)

𝜏 3𝑗+𝑚
, 𝑚 = 1, 2, 3; 𝜏 → +∞,

𝑞4𝑘−𝑚(𝜂, 𝜙) =
+∞∑︁
𝑗=0

𝑞4𝑘−𝑚,4𝑗+𝑚(𝜙)

𝜂4𝑗+𝑚
, 𝑚 = 1, 2, 3, 4; 𝑘 = 0, 1, . . . 𝜂 → ±∞.

The validity of these asymptotic expansions is proved in what follows.
To determine functions 𝑣𝑘(𝜌, 𝜙), by identity (6) we obtain the following equations:

−(1 − 𝜌)(𝜌− 𝛼)2𝑣0(𝜌, 𝜙) = 𝑓0(𝜌, 𝜙) − ℎ0(𝜌, 𝜙),

∆𝑣𝑘−1(𝜌, 𝜙) + ̃︀𝑣𝑘−1(𝜌, 𝜙) − (1 − 𝜌)(𝜌− 𝛼)2𝑣𝑘(𝜌, 𝜙) = 𝑓𝑘(𝜌, 𝜙) − ℎ𝑘(𝜌, 𝜙), 𝑘 = 1, 2, . . . .
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This yields

𝑣𝑘(𝜌, 𝜙) =
𝑓𝑘(𝜌, 𝜙) − ∆𝑣𝑘−1(𝜌, 𝜙) − ℎ𝑘(𝜌, 𝜙)

(𝜌− 1)(𝜌− 𝛼)2
+

̃︀𝑣𝑘−1(𝜌, 𝜙)

(1 − 𝜌)(𝜌− 𝛼)2
, 𝑘 = 0, 1, . . . ,

and 𝑣−1(𝜌, 𝜙) ≡ 0, ̃︀𝑣−1(𝜌, 𝜙) ≡ 0.
Let us determine unknown functions, that is, coefficients ℎ𝑘(𝜌, 𝜙) of the asymptotic series so

that

𝑣𝑘(𝜌, 𝜙) ∈ 𝐶∞(𝐷), 𝑤𝑘(𝜏, 𝜙) → 0 as 𝜏 → +∞, 𝑞𝑘(𝜂, 𝜙) → 0 as 𝜂 → ±∞.

Let 𝑔𝑘(𝜌, 𝜙) = 𝑓𝑘(𝜌, 𝜙) − ∆𝑣𝑘−1(𝜌, 𝜙), then 𝑣𝑘(𝜌, 𝜙) ∈ 𝐶∞(𝐷) as

ℎ𝑘(𝜌, 𝜙) = 𝜒1(𝜌)ℎ1,𝑘(𝜌, 𝜙) + 𝜒2(𝜌)ℎ2,𝑘(𝜌, 𝜙),

where

ℎ2,𝑘(𝜌, 𝜙) = 𝑔𝑘,0(𝜙) + 𝑔𝑘,1(𝜙)(𝜌− 𝛼) −
(︂
𝜌− 𝛼

1 − 𝛼

)︂2

(𝑔𝑘,0(𝜙) + 𝑔𝑘,1(𝜙)(1 − 𝛼)),

ℎ1,𝑘(𝜌, 𝜙) =

(︂
𝜌− 𝛼

1 − 𝛼

)︂2

𝑔𝑘(1, 𝜙), 𝑔𝑘,0(𝜙) = 𝑔𝑘(𝛼, 𝜙), 𝑔𝑘,1(𝜙) =
𝜕𝑔𝑘(𝛼, 𝜙)

𝜕𝜌
.

Thus, we have determined the coefficients of the series
+∞∑︁
𝑘=0

𝜀𝑘𝑣𝑘(𝜌, 𝜙),
+∞∑︁
𝑘=0

𝜀𝑘ℎ𝑘(𝜌, 𝜙).

We proceed to determining the terms of the asymptotic series
∑︀+∞

𝑘=−1 𝜇
𝑘𝑤𝑘(𝜏, 𝜙). We write

identity (7) as

+∞∑︁
𝑘=0

𝜇𝑘

(︂
𝜕2𝑤−1+𝑘

𝜕𝜏 2
− 𝜇

𝜕𝑤−1+𝑘

𝜕𝜏
+ 𝜇2𝜕

2𝑤−1+𝑘

𝜕𝜙2
− 𝜏(1 − 𝛼− 𝜇𝜏)2𝑤−1+𝑘

)︂

=
+∞∑︁
𝑘=0

𝜇3𝑘

(︂
1 − 2𝜇𝜏

1 − 𝛼
+

(𝜇𝜏)2

(1 − 𝛼)2

)︂
𝑔𝑘(1, 𝜙).

This implies:

𝐿𝑤−1 ≡
𝜕2𝑤−1

𝜕𝜏 2
− 𝜏(1 − 𝛼)2𝑤−1 = 𝑔0(1, 𝜙), (9)

𝐿𝑤0 = −2(1 − 𝛼)𝜏 2𝑤−1 −
2𝜏

1 − 𝛼
𝑔0(1, 𝜙) +

𝜕𝑤−1

𝜕𝜏
, (10)

𝐿𝑤1 = −2(1 − 𝛼)𝜏 2𝑤0 + 𝜏 3𝑤−1 +
𝜏 2

(1 − 𝛼)2
𝑔0(1, 𝜙) +𝑊1, (11)

𝐿𝑤3𝑘−1 = −2(1 − 𝛼)𝜏 2𝑤3𝑘−2 + 𝜏 3𝑤3𝑘−3 + 𝑔𝑘(1, 𝜙) +𝑊3𝑘−1 +𝐵𝑘,0(𝜙), (12)

𝐿𝑤3𝑘 = −2(1 − 𝛼)𝜏 2𝑤3𝑘−1 + 𝜏 3𝑤3𝑘−2 −
2𝜏

1 − 𝛼
𝑔𝑘(1, 𝜙) +𝑊3𝑘 +𝐵𝑘,1(𝜙)𝜏, (13)

𝐿𝑤3𝑘+1 = −2(1 − 𝛼)𝜏 2𝑤3𝑘 + 𝜏 3𝑤3𝑘−1 +
𝜏 2

(1 − 𝛼)2
𝑔𝑘(1, 𝜙) +𝑊3𝑘+1 +𝐵𝑘,2(𝜙)𝜏 2, (14)

where

(𝜏, 𝜙) ∈ 𝐷1 = {(𝜏, 𝜙)|0 < 𝜏 < +∞, 0 6 𝜙 < 2𝜋}, 𝑊𝑠 =
𝜕𝑤𝑠−1

𝜕𝜏
− 𝜕2𝑤𝑠−2

𝜕𝜙2
,

and 𝐵𝑘,0(𝜙), 𝐵𝑘,1(𝜙), 𝐵𝑘,2(𝜙) are unknown functions to be determined, 𝑘 = 1, 2, . . .
Boundary conditions become

𝑤3𝑘(0, 𝜙) = 𝜓𝑘(𝜙) − 𝑣𝑘(1, 𝜙), 𝑘 = 0, 1, . . . , 𝑤𝑠(0, 𝜙) = 0, 𝑠 ̸= 3𝑘. (15)
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Let us prove the following lemma.

Lemma 3.1. Let ̃︀𝑓(𝜏)𝛿(𝜙) ∈ 𝐶∞(𝐷1), 𝑎0 > 0. Then the problem

𝜕2𝑧(𝜏, 𝜙)

𝜕𝜏 2
− 𝜏𝑎0𝑧(𝜏, 𝜙) = ̃︀𝑓(𝜏)𝛿(𝜙), (𝜏, 𝜙) ∈ 𝐷1, 𝑧(0, 𝜙) = 𝑧0(𝜙) (16)

has the unique solution 𝑧(𝜏, 𝜙) ∈ 𝐶∞(𝐷1).

Proof. Let 𝑡 = 3
√
𝑎0𝜏 , then problem (16) casts into the form:

𝜕2𝑧(𝑡, 𝜙)

𝜕𝑡2
− 𝑡𝑧(𝑡, 𝜙) =

1
3
√︀
𝑎20

̃︀𝑓(𝑡)𝛿(𝜙), 𝑧(0, 𝜙) = 𝑧0(𝜙), (17)

We seek the a solution to problem (17) as

𝑧(𝑡, 𝜙) = 𝑧1(𝑡)
1

3
√︀
𝑎20
𝛿(𝜙).

For 𝑧1(𝑡) we obtain the problem

𝑧′′1 (𝑡) − 𝑡𝑧1(𝑡) = ̃︀𝑓(𝑡), 𝑧1(0) = 𝑧0(𝜙) 3

√︁
𝑎20/𝛿(𝜙) ≡ 𝑧01 . (18)

The associated homogeneous equation

𝑧′′1 (𝑡) − 𝑡𝑧1(𝑡) = 0

has two independent solutions 𝐴𝑖(𝑡), 𝐵𝑖(𝑡), which are Airy functions [7]. By means of Airy
functions we write the solution to problem (18):

𝑧1(𝑡) =
𝑧01

𝐴𝑖(0)
𝐴𝑖(𝑡) + 𝜋𝐵𝑖(𝑡)

∫︁ +∞

𝑡

𝐴𝑖(𝑠) ̃︀𝑓(𝑠)𝑑𝑠

+ 𝜋𝐴𝑖(𝑡)

(︂∫︁ 𝑡

0

𝐵𝑖(𝑠) ̃︀𝑓(𝑠)𝑑𝑠−
√

3

∫︁ +∞

0

𝐴𝑖(𝑠) ̃︀𝑓(𝑠)𝑑𝑠

)︂
.

This yields

𝑧(𝑡, 𝜙) =
𝑧0(𝜙)

𝐴𝑖(0)
𝐴𝑖(𝑡) +

𝜋
3
√︀
𝑎20
𝛿(𝜙)𝐵𝑖(𝑡)

∫︁ +∞

𝑡

𝐴𝑖(𝑠) ̃︀𝑓(𝑠)𝑑𝑠

+
𝜋

3
√︀
𝑎20
𝛿(𝜙)𝐴𝑖(𝑡)

(︂∫︁ 𝑡

0

𝐵𝑖(𝑠) ̃︀𝑓(𝑠)𝑑𝑠−
√

3

∫︁ +∞

0

𝐴𝑖(𝑠) ̃︀𝑓(𝑠)𝑑𝑠

)︂
.

Corollary 1. If ̃︀𝑓(𝜏) = 𝑂(𝜏𝑁1) as 𝜏 → +∞, then thanks to the asymptotic behavior of Airy
function as 𝜏 → +∞, we obtain 𝑧(𝜏, 𝜙) = 𝑂(𝜏𝑁1−1), 𝑁1 is a constant.

By means of the above lemma we prove the existence of the unique solutions to equations (9)–
(14) satisfying conditions (15). In what follows we shall prove the existence of functions 𝐵𝑘,0(𝜙),
𝐵𝑘,1(𝜙) 𝐵𝑘,2(𝜙), for which the solutions to these problems belong to the class of functions with
a power decay in 𝜏 and the solution to each equation (9)–(14) satisfies the identity:

lim
𝜏→+∞

𝑤𝑘(𝜏, 𝜙) = 0, 𝑘 = −1, 0, 1, . . . .

We proceed to determining the terms of the asymptotic series
∑︀+∞

𝑘=−2 𝜆
𝑘𝑞𝑘(𝜂, 𝜙). We write

identity (8) as

+∞∑︁
𝑘=0

𝜆𝑘
(︂
𝜕2𝑞−2+𝑘

𝜕𝜂2
+ 𝜆

𝜕𝑞−2+𝑘

𝜕𝜂
+ 𝜆2

𝜕2𝑞−2+𝑘

𝜕𝜙2
− 𝜂2(1 − 𝛼− 𝜆𝜂)𝑞−2+𝑘

)︂
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=
+∞∑︁
𝑘=0

𝜆4𝑘

(︃
𝑔𝑘,0(𝜙) + 𝑔𝑘,1(𝜙)𝜆𝜂 −

(︂
𝜆𝜂

1 − 𝛼

)︂2

(𝑔𝑘,0(𝜙) + 𝑔𝑘,1(𝜙)(1 − 𝛼))

)︃
.

It follows that

𝑙𝑞−2 ≡
𝜕2𝑞−2

𝜕𝜂2
− 𝜂2(1 − 𝛼)𝑞−2 = 𝑔0,0(𝜙), (19)

𝑙𝑞−1 = −𝜕𝑞−2

𝜕𝜂
− 𝜂3𝑞−2 + 𝜂𝑔0,1(𝜙), (20)

𝑙𝑞0 = 𝑄0 − 𝜂3𝑞−1 −
(︂

𝜂

1 − 𝛼

)︂2

(𝑔0,0(𝜙) + 𝑔0,1(𝜙)(1 − 𝛼)), (21)

𝑙𝑞1 = 𝑄1 − 𝜂3𝑞0, (22)

𝑙𝑞4𝑘−2 = 𝑄4𝑘−2 − 𝜂3𝑞4𝑘−3 + 𝑔𝑘,0(𝜙) + 𝐴𝑘,0(𝜙), (23)

𝑙𝑞4𝑘−1 = 𝑄4𝑘−1 − 𝜂3𝑞4𝑘−2 + 𝜂𝑔𝑘,1(𝜙) + 𝐴𝑘,1(𝜙)𝜂, (24)

𝑙𝑞4𝑘 = 𝑄4𝑘 − 𝜂3𝑞4𝑘−1 −
(︂

𝜂

1 − 𝛼

)︂2

(𝑔𝑘,0(𝜙) + 𝑔𝑘,1(𝜙)(1 − 𝛼)) + 𝐴𝑘,2(𝜙)𝜂2, (25)

𝑙𝑞4𝑘+1 = 𝑄4𝑘+1 − 𝜂3𝑞4𝑘, (26)

where

(𝜂, 𝜙) ∈ 𝐷2 = {(𝜂, 𝜙)| −∞ < 𝜂 < +∞, 0 6 𝜙 < 2𝜋}, 𝑄𝑠 = −𝜕𝑞𝑠−1

𝜕𝜂
− 𝜕2𝑞𝑠−2

𝜕𝜙2
,

and 𝐴𝑘,0(𝜙), 𝐴𝑘,1(𝜙), 𝐴𝑘,2(𝜙) are unknown functions to be determined, 𝑘 = 1, 2, . . .
Let us prove the following auxiliary lemma implying the existence of solutions to equations

(19)–(26).

Lemma 3.2. Let ̃︀𝑓(𝜂)𝛿(𝜙) ∈ 𝐶∞(𝐷2), 𝑏0 > 0. Then the problem

𝜕2𝑧(𝜂, 𝜙)

𝜕𝜂2
− 𝜂2𝑏0𝑧(𝜂, 𝜙) = ̃︀𝑓(𝜂)𝛿(𝜙), (𝜂, 𝜙) ∈ 𝐷2, (27)

has the unique solution 𝑧(𝜂, 𝜙) ∈ 𝐶∞(𝐷2).

Proof. By the change 𝜂 = 4
√︀

4/𝑏0𝑡 we obtain the equation

𝜕2𝑧(𝑡, 𝜙)

𝜕𝑡2
− 𝑡2𝑧(𝑡, 𝜙) =

2√
𝑏0
̃︀𝑓(𝑡)𝛿(𝜙).

We seek the solution to this equation as

𝑧(𝑡, 𝜙) = 𝑧2(𝑡)

√︂
4

𝑏0
𝛿(𝜙).

Then for 𝑧2(𝑡) we obtain the equation:

𝑧′′2 (𝑡) − 𝑡2𝑧2(𝑡) = ̃︀𝑓(𝑡),

and the associated homogeneous equation

𝑧′′2 (𝑡) − 𝑡2𝑧2(𝑡) = 0

has a fundamental system of solutions {𝑈4(𝑡), 𝑈4(−𝑡)}, where 𝑈4(𝑡) =
√︁

2𝑡
𝜋
𝐾1/4(𝑡

2), 𝑡 > 0,

𝐾1/4(𝑡
2) is the McDonald function (modified Bessel function) [7]. Let us describe the basic

properties of these functions 𝑈4(𝑡), 𝑈4(−𝑡):
a) The Wronskian of these functions is equal to

𝑊 (𝑈4(𝑡), 𝑈4(−𝑡)) = 4 csc(𝜋/4) = 4
√

2.
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b) As 𝑡 = 0, 𝑈4(0) = 𝜋−1/22−1/4Γ(1/4).

c) As 𝑡→ +∞, function 𝑈4(𝑡) decays exponentially: 𝑈4(𝑡) ∼ 𝑡−1/2𝑒−𝑡2 .

As 𝑡→ −∞, the function 𝑈4(𝑡) =
√︁

2|𝑡|
𝜋

(
√

2𝜋𝐼1/4(𝑡
2) +𝐾1/4(𝑡

2)), 𝑡 < 0, grows exponentially:

𝑈4(𝑡) = (2/𝑡)1/2𝑒𝑡
2

(1 +𝑂(𝑡−2)),

where 𝐼1/4(𝑡
2), 𝐾1/4(𝑡

2) are modified Bessel functions. Therefore, the solution to problem (27)
can be written as

𝑧(𝑡, 𝜙) =
1

2
√

2𝑏0
𝛿(𝜙)

(︂
𝑈4(𝑡)

∫︁ 𝑡

−∞
𝑈4(−𝑠) ̃︀𝑓(𝑠)𝑑𝑠+ 𝑈4(−𝑡)

∫︁ +∞

𝑡

𝑈4(𝑠) ̃︀𝑓(𝑠)𝑑𝑠

)︂
,

where 𝑡 = 4
√︀
𝑏0/4𝜂.

Corollary 2. If ̃︀𝑓(𝜂) = 𝑂(𝜂𝑁2) as 𝜂 → ±∞, then 𝑧(𝜂, 𝜙) = 𝑂(𝜂𝑁2−2), 𝑁2 is a constant.

Employing this lemma, we can write explicitly the solutions to problems (19)–(26).
Let us prove the existence of functions 𝐴𝑘,0(𝜙), 𝐴𝑘,1(𝜙), 𝐴𝑘,2(𝜙), for which the identities

lim
𝜂→±∞

𝑞𝑘(𝜂, 𝜙) = 0, 𝑘 = −2,−1, 0, 1, . . .

hold true.

Lemma 3.3. There exist functions 𝐴𝑘,𝑗(𝜙), 𝐵𝑘,𝑗(𝜙) ∈ 𝐶∞[0, 2𝜋], 𝑘 ∈ 𝑁 , 𝑗 = 0, 1, 2, satisfy-
ing the identities (𝐴𝑘,𝑗 = 𝐴𝑘,𝑗(𝜙), 𝐵𝑘,𝑗 = 𝐵𝑘,𝑗(𝜙)):

𝐴𝑘,0 − 𝛼𝐴𝑘,1 + 𝛼2𝐴𝑘,2 +𝐵𝑘,0 +𝐵𝑘,1 +𝐵𝑘,2 = 0, (28)

𝐴𝑘,1 − 2𝛼𝐴𝑘,2 −𝐵𝑘,1 − 2𝐵𝑘,2 = 0, (29)

𝐴𝑘,2 +𝐵𝑘,2 = 0, (30)

and the relations

𝑤3𝑘−𝑚(𝜏, 𝜙) =
∞∑︁
𝑗=0

𝑤3𝑘−𝑚,3𝑗+𝑚(𝜙)

𝜏 3𝑗+𝑚
, 𝑚 = 1, 2, 3, 𝑤𝑘,𝑗 ∈ 𝐶∞[0, 2𝜋], 𝜏 → +∞, (31)

𝑞4𝑘−𝑚(𝜂, 𝜙) =
∞∑︁
𝑗=0

𝑞4𝑘−𝑚,4𝑗+𝑚(𝜙)

𝜂4𝑗+𝑚
, 𝑚 = 1, 2, 3, 4, 𝑞𝑘,𝑗 ∈ 𝐶∞[0, 2𝜋], 𝜂 → ±∞. (32)

hold true.

Proof. The meaning of identities (28)–(30) is that such choice of functions keeps the smoothness
of solutions 𝑣𝑘(𝜌, 𝜙), i.e.,

𝐴𝑘,0 + 𝐴𝑘,1(𝜌− 𝛼) + 𝐴𝑘,2(𝜌− 𝛼)2 +𝐵𝑘,0 +𝐵𝑘,1(1 − 𝜌) +𝐵𝑘,2(1 − 𝜌)2 ≡ 0.

We observe that as 𝜏 → +∞ and 𝜂 → ±∞, the relations

𝑤−1(𝜏, 𝜙) =
∞∑︁
𝑗=0

𝑤−1,3𝑗+1(𝜙)

𝜏 3𝑗+1
,

𝑤𝑚(𝜏, 𝜙) =
∞∑︁
𝑗=1

𝑤𝑚,3𝑗−𝑚(𝜙)

𝜏 3𝑗−𝑚
, 𝑚 = 0, 1,

𝑞−𝑚(𝜂, 𝜙) =
∞∑︁
𝑗=0

𝑞−𝑚,4𝑗+𝑚(𝜙)

𝜂4𝑗+𝑚
, 𝑚 = 2, 1,

𝑞𝑚(𝜂, 𝜙) =
∞∑︁
𝑗=1

𝑞𝑚,4𝑗−𝑚(𝜙)

𝜂4𝑗−𝑚
, 𝑚 = 0, 1,
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hold true, where 𝑤𝑘,𝑗(𝜙), 𝑞𝑘,𝑗(𝜙) ∈ 𝐶∞[0, 2𝜋].
Suppose that as 𝜏 → +∞ and 𝜂 → ±∞ for some 𝑘 = 0, 1, . . ., the relations

𝑤3𝑘−1(𝜏, 𝜙) =
∞∑︁
𝑗=0

𝑤3𝑘−1,3𝑗+1(𝜙)

𝜏 3𝑗+1
,

𝑤3𝑘+𝑚(𝜏, 𝜙) =
∞∑︁
𝑗=1

𝑤3𝑘+𝑚,3𝑗−𝑚(𝜙)

𝜏 3𝑗−𝑚
, 𝑚 = 0, 1,

𝑞4𝑘−𝑚(𝜂, 𝜙) =
∞∑︁
𝑗=0

𝑞4𝑘−𝑚,4𝑗+𝑚(𝜙)

𝜂4𝑗+𝑚
, 𝑚 = 2, 1,

𝑞4𝑘+𝑚(𝜂, 𝜙) =
∞∑︁
𝑗=1

𝑞4𝑘+𝑚,4𝑗−𝑚(𝜙)

𝜂4𝑗−𝑚
, 𝑚 = 0, 1,

hold true, where 𝑤𝑘,𝑗, 𝑞𝑘,𝑗 ∈ 𝐶∞[0, 2𝜋]. Then for 𝑘 + 1 we have

𝐿𝑤3𝑘+2 = −2(1 − 𝛼)𝜏 2𝑤3𝑘+1 + 𝜏 3𝑤3𝑘 + 𝑔𝑘+1(1, 𝜙) +
𝜕𝑤3𝑘+1

𝜕𝜏
− 𝜕2𝑤3𝑘

𝜕𝜙2
+𝐵𝑘+1,0,

𝐿𝑤3𝑘+3 = −2(1 − 𝛼)𝜏 2𝑤3𝑘+2 + 𝜏 3𝑤3𝑘+1 −
2𝜏

1 − 𝛼
𝑔𝑘+1(1, 𝜙) +

𝜕𝑤3𝑘+2

𝜕𝜏
− 𝜕2𝑤3𝑘+1

𝜕𝜙2
+𝐵𝑘+1,1𝜏,

𝐿𝑤3𝑘+4 = −2(1 − 𝛼)𝜏 2𝑤3𝑘+3 + 𝜏 3𝑤3𝑘+2 +
𝜏 2

(1 − 𝛼)2
𝑔𝑘+1(1, 𝜙) +

𝜕𝑤3𝑘+3

𝜕𝜏
− 𝜕2𝑤3𝑘+2

𝜕𝜙2
+𝐵𝑘+1,2𝜏

2,

𝑙𝑞4𝑘+2 = −𝜕𝑞4𝑘+1

𝜕𝜂
− 𝜕2𝑞4𝑘

𝜕𝜙2
− 𝜂3𝑞4𝑘+1 + 𝑔𝑘+1,0(𝜙) + 𝐴𝑘+1,0,

𝑙𝑞4𝑘+3 = −𝜕𝑞4𝑘+2

𝜕𝜂
− 𝜕2𝑞4𝑘+1

𝜕𝜙2
− 𝜂3𝑞4𝑘+2 + 𝜂𝑔𝑘+1,1(𝜙) + 𝐴𝑘+1,1𝜂,

𝑙𝑞4𝑘+4 = −𝜕𝑞4𝑘+3

𝜕𝜂
− 𝜕2𝑞4𝑘+2

𝜕𝜙2
− 𝜂3𝑞4𝑘+3 − (

𝜂

1 − 𝛼
)2(𝑔𝑘+1,0(𝜙) + 𝑔𝑘+1,1(𝜙)(1 − 𝛼)) + 𝐴𝑘+1,2𝜂

2,

𝑙𝑞4𝑘+5 = −𝜕𝑞4𝑘+4

𝜕𝜂
− 𝜕2𝑞4𝑘+3

𝜕𝜙2
− 𝜂3𝑞4𝑘+4.

This implies

𝑤3𝑘+2 =
∞∑︁
𝑗=0

𝑤3𝑘+2,3𝑗+1

𝜏 3𝑗+1
,

𝑤3𝑘+3 =
∞∑︁
𝑗=0

𝑤3𝑘+3,3𝑗+3

𝜏 3𝑗+3
as 𝐵𝑘+1,1 = −2𝐵𝑘+1,0

1 − 𝛼
+ 3𝑤3𝑘+1,2 −

2𝑤3𝑘,3

1 − 𝛼
,

𝑤3𝑘+4 =
∞∑︁
𝑗=0

𝑤3𝑘+4,3𝑗+2

𝜏 3𝑗+2
as 𝐵𝑘+1,2 =

𝐵𝑘+1,0

(1 − 𝛼)2
− 2𝑤3𝑘+1,2

1 − 𝛼
+

𝑤3𝑘,3

(1 − 𝛼)2
,

𝑞4𝑘+2 =
∞∑︁
𝑗=0

𝑞4𝑘+2,4𝑗+2

𝜂4𝑗+2
, 𝑞4𝑘+3 =

∞∑︁
𝑗=0

𝑞4𝑘+3,4𝑗+1

𝜂4𝑗+1
, 𝑞4𝑘+5 =

∞∑︁
𝑗=0

𝑞4𝑘+5,4𝑗+3

𝜂4𝑗+3
,

𝑞4𝑘+4 =
∞∑︁
𝑗=0

𝑞4𝑘+4,4𝑗+4

𝜂4𝑗+4
as 𝐴𝑘+1,2 = − 𝐴𝑘+1,0

(1 − 𝛼)2
− 𝐴𝑘+1,1

1 − 𝛼
+

𝑞4𝑘+1,3

(1 − 𝛼)2
,
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where 𝑤𝑘,𝑗 = 𝑤𝑘,𝑗(𝜙), 𝑞𝑘,𝑗 = 𝑞𝑘,𝑗(𝜙). As a result we obtain a system of linear algebraic equations
with three unknowns 𝐴𝑘+1,0, 𝐴𝑘+1,1, 𝐵𝑘+1,0:

1 − 2𝛼

(1 − 𝛼)2
𝐴𝑘+1,0 −

𝛼

1 − 𝛼
𝐴𝑘+1,1 + 𝛼2𝑐+ 𝑐1 +

𝛼2

(1 − 𝛼)2
𝐵𝑘+1,0 = 0,

2𝛼

(1 − 𝛼)2
𝐴𝑘+1,0 +

1 + 𝛼

1 − 𝛼
𝐴𝑘+1,1 − 2𝛼2𝑐− 𝑐1 − 2𝑐2 −

2𝛼

(1 − 𝛼)2
𝐵𝑘+1,0 = 0,

1

(1 − 𝛼)2
𝐴𝑘+1,0 +

1

1 − 𝛼
𝐴𝑘+1,1 − 𝑐− 𝑐2 −

1

(1 − 𝛼)2
𝐵𝑘+1,0 = 0,

where 𝑐 =
𝑞4𝑘+1,3

(1−𝛼)2
, 𝑐1 = 3𝑤3𝑘+1,2 − 2𝑤3𝑘,3

1−𝛼
, 𝑐2 =

𝑤3𝑘,3

(1−𝛼)2
− 2𝑤3𝑘+1,2

1−𝛼
.

The system has the unique solution

𝐵𝑘+1,0 = −𝑞4𝑘+1,3 +
𝑤3𝑘,3

(1 − 𝛼)2
− 2𝑤3𝑘+1,2

1 − 𝛼
,

𝐴𝑘+1,1 = 𝑤3𝑘+1,2, 𝐴𝑘+1,0 = 𝑤3𝑘,3

(︂
1 +

1

(1 − 𝛼)2

)︂
− 𝑤3𝑘+1,2

(︂
3(1 − 𝛼) +

2

1 − 𝛼

)︂
.

Therefore, for each 𝑘 = 0, 1, . . ., identities (31) and (32) hold true, i.e.,

lim
𝜂→±∞

𝑞𝑘−2(𝜂, 𝜙) = 0, lim
𝜏→+∞

𝑤𝑘−1(𝜏, 𝜙) = 0, 𝑘 = 0, 1, . . .

We observe that

𝑤3𝑘−𝑚

(︂
1 − 𝜌

𝜇
, 𝜙

)︂
= 𝜇𝑚

∞∑︁
𝑗=0

𝜀𝑗
𝑤3𝑘−𝑚,3𝑗+𝑚(𝜙)

(1 − 𝜌)3𝑗+𝑚
, 𝑚 = 1, 2, 3, 𝜀→ 0,

𝑞4𝑘−𝑚

(︂
𝜌− 𝛼

𝜆
, 𝜙

)︂
= 𝜆𝑚

∞∑︁
𝑗=0

𝜀𝑗
𝑞4𝑘−𝑚,4𝑗+𝑚(𝜙)

(𝜌− 𝛼)4𝑗+𝑚
, 𝑚 = 1, 2, 3, 4, 𝑘 = 0, 1, . . . , 𝜀→ 0.

3.2. Justification of FAES. We proceed to justifying of formal asymptotic expansion (5).
Let

𝑢𝑛(𝜌, 𝜙, 𝜀) =
𝑛∑︁

𝑘=0

𝜀𝑘𝑣𝑘(𝜌, 𝜙) + 𝜒1(𝜌)
3𝑛+1∑︁
𝑘=−1

𝜇𝑘𝑤𝑘(𝜏, 𝜙) + 𝜒2(𝜌)
4𝑛∑︁

𝑘=−2

𝜆𝑘𝑞𝑘(𝜂, 𝜙),

𝑅(𝜌, 𝜙, 𝜀) = 𝑢(𝜌, 𝜙, 𝜀) − 𝑢𝑛(𝜌, 𝜙, 𝜀).

We note that 𝑢𝑛(𝜌, 𝜙, 𝜀) ∈ 𝐶∞(𝐷), 𝜀→ 0.
For the residual term 𝑅(𝜌, 𝜙, 𝜀) we obtain the equation:

𝜀∆𝑅(𝜌, 𝜙, 𝜀) − (1 − 𝜌)(𝛼− 𝜌)2𝑅(𝜌, 𝜙, 𝜀) = 𝜀𝑛+3/4Φ, (𝜌, 𝜙) ∈ 𝐷,

where

Φ = ( ̃︀𝑓(𝜌, 𝜙, 𝜀) − ∆𝑣𝑛(𝜌, 𝜙) − ̃︀𝑣𝑛(𝜌, 𝜙, 𝜀) + (𝜏 3𝑤3𝑛(𝜏, 𝜙) − 2(1 − 𝛼)𝜏 2𝑤3𝑛+1(𝜏, 𝜙)

+
𝜕𝑤3𝑛+1(𝜏, 𝜙)

𝜕𝜏
− 𝜕2(𝑤3𝑛(𝜏, 𝜙) + 𝜇𝑤3𝑛+1(𝜏, 𝜙))

𝜕𝜙2
+ 𝜇𝜏 3𝑤3𝑛+1(𝜏, 𝜙))𝜒1(𝜌))𝜀1/4

−
(︂
𝜂3𝑞4𝑛(𝜂, 𝜙) +

𝜕𝑞4𝑛(𝜂, 𝜙)

𝜕𝜂
+
𝜕2(𝑞4𝑛−1(𝜂, 𝜙) + 𝜆𝑞4𝑛(𝜂, 𝜙))

𝜕𝜙2

)︂
𝜒2(𝜌),

̃︀𝑓(𝜌, 𝜙, 𝜀) =
∞∑︁
𝑘=0

𝜀𝑘𝑓𝑛+1+𝑘(𝜌, 𝜙), ̃︀𝑣𝑛(𝜌, 𝜙, 𝜀) =
∞∑︁
𝑘=0

𝜀𝑘̃︀𝑣𝑛+𝑘(𝜌, 𝜙).
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We observe that Φ is a smooth function. This is as 𝜀 → 0 there exists a constant 𝑀 > 0 such
that ‖Φ‖𝐶 6𝑀 , i.e., Φ = 𝑂(1). The boundary condition becomes:

𝑅(1, 𝜙, 𝜀) =
∞∑︁

𝑘=𝑛+1

𝜀𝑘𝜓𝑘(𝜙) or 𝑅(1, 𝜙, 𝜀) = 𝑂(𝜀𝑛+1), 𝜀→ 0.

Thus, we obtain the following problem:

𝜀∆𝑅(𝜌, 𝜙, 𝜀) − (1 − 𝜌)(𝛼− 𝜌)2𝑅(𝜌, 𝜙, 𝜀) = 𝑂(𝜀𝑛+3/4), 𝜀→ 0, (𝜌, 𝜙) ∈ 𝐷,

𝑅(1, 𝜙, 𝜀) = 𝑂(𝜀𝑛+1), 𝜀→ 0.

Applying the maximum principle to this problem, we obtain

𝑅(𝜌, 𝜙, 𝜀) = 𝑂(𝜀𝑛−1/4), 𝜀→ 0.

This implies the validity of expansion (4). The proof of the theorem is complete.

Example. Let

𝑎(𝜌, 𝜙) ≡ 1, 𝑓(𝜌, 𝜙) = 1 + 𝜌 cos𝜙+ 𝜌2 sin𝜙+ 𝜌3, 𝜓(𝜙, 𝜀) ≡ 0,

that is, we study the problem

𝜀∆𝑢(𝜌, 𝜙, 𝜀) − (1 − 𝜌)
(︁1

2
− 𝜌
)︁2
𝑢(𝜌, 𝜙, 𝜀) = 1 + 𝜌 cos𝜙+ 𝜌2 sin𝜙+ 𝜌3, (𝜌, 𝜙) ∈ 𝐷, (33)

𝑢(1, 𝜙, 𝜀) = 0, (34)

then

𝑢0(𝜌, 𝜙) = −1 + 𝜌 cos𝜙+ 𝜌2 sin𝜙+ 𝜌3

(1 − 𝜌)(1
2
− 𝜌)2

.

If

ℎ1,0(𝜌, 𝜙) =(2𝜌− 1)2(2 + cos𝜙+ sin𝜙),

ℎ2,0(𝜌, 𝜙) =
9

8
+

1

2
cos𝜙+

1

4
sin𝜙+

(︁
𝜌− 1

2

)︁(︁3

4
+ cos𝜙+ sin𝜙

)︁
−
(︁
𝜌− 1

2

)︁2
(6 + 4 cos𝜙+ 3 sin𝜙),

then

𝑣0(𝜌, 𝜙) = −1 + 𝜌 cos𝜙+ 𝜌2 sin𝜙+ 𝜌3 − ℎ1,0(𝜌, 𝜙)𝜒1(𝜌) − ℎ2,0(𝜌, 𝜙)𝜒2(𝜌)

(1 − 𝜌)(1
2
− 𝜌)2

,

𝑣1(𝜌, 𝜙) =
∆𝑣0(𝜌, 𝜙) − ℎ1,1(𝜌, 𝜙)𝜒1(𝜌) − ℎ2,1(𝜌, 𝜙)𝜒2(𝜌)

(1 − 𝜌)(1
2
− 𝜌)2

+
̃︀𝑣0(𝜌, 𝜙)

(1 − 𝜌)(1
2
− 𝜌)2

,

where

ℎ2,1(𝜌, 𝜙) = 𝑔1,0(𝜙) + 𝑔1,1(𝜙)(𝜌− 1/2) − (2𝜌− 1)2(𝑔1,0(𝜙) + 𝑔1,1(𝜙)/2),

ℎ1,1(𝜌, 𝜙) = (2𝜌− 1)2∆𝑣0(1, 𝜙), 𝑔1,0(𝜙) = ∆𝑣0(1/2, 𝜙), 𝑔1,1(𝜙) =
𝜕

𝜕𝜌
∆𝑣0(𝜌, 𝜙)|𝜌=1/2,

̃︀𝑣0(𝜌, 𝜙) = ̃︀𝑤0(𝜌, 𝜙)̃︀𝜒1(𝜌) + 2
𝜕 ̃︀𝑤0(𝜌, 𝜙)

𝜕𝜌
𝜒′
1(𝜌) + ̃︀𝑞0(𝜌, 𝜙)̃︀𝜒2(𝜌) + 2

𝜕̃︀𝑞0(𝜌, 𝜙)

𝜕𝜌
𝜒′
2(𝜌),

̃︀𝑤0(𝜌, 𝜙) = −4(2 + cos𝜙+ sin𝜙)

1 − 𝜌
, ̃︀𝑞0(𝜌, 𝜙) = −9 + 4 cos𝜙+ 2 sin𝜙

(2𝜌− 1)2
.

For 𝑤𝑘(𝜏, 𝜙) and 𝑞𝑘(𝜂, 𝜙) we obtain problems similar to problems (9)–(14), (15), (19)–(26).
The solutions to these problems exist, are unique and as 𝜏 → +∞, 𝜂 → ±∞, the estimates
hold true:

𝑤−1(𝜏, 𝜙) = 𝑤2(𝜏, 𝜙) = 𝑂(𝜏−1), 𝑤0(𝜏, 𝜙) = 𝑤3(𝜏, 𝜙) = 𝑂(𝜏−3),
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𝑤1(𝜏, 𝜙) = 𝑤4(𝜏, 𝜙) = 𝑂(𝜏−2), 𝑞−2(𝜂, 𝜙) = 𝑞2(𝜂, 𝜙) = 𝑂(𝜂−2),

𝑞−1(𝜂, 𝜙) = 𝑞3(𝜂, 𝜙) = 𝑂(𝜂−1), 𝑞0(𝜂, 𝜙) = 𝑞4(𝜂, 𝜙) = 𝑂(𝜂−4), 𝑞1(𝜂, 𝜙) = 𝑂(𝜂−3).

Therefore, for the solution to problem (33)–(34) the expansion

𝑢(𝜌, 𝜙, 𝜀) =𝑣0(𝜌, 𝜙) + 𝜀𝑣1(𝜌, 𝜙) + 𝜒1(𝜌)
4∑︁

𝑘=−1

𝜀𝑘/3𝑤𝑘

(︂
1 − 𝜌

𝜀1/3
, 𝜙

)︂

+ 𝜒2(𝜌)
4∑︁

𝑘=−2

𝜀𝑘/4𝑞𝑘

(︂
2𝜌− 1

2𝜀1/4
, 𝜙

)︂
+𝑂(𝜀3/4), 𝜀→ 0,

holds true.

Conclusion. The feature of the considered problem is that it is bisingular. For this case we
have proved the applicability of the boundary layer method. We have constructed the uniform
asymptotic expansion in the small parameter for the solution to the Dirichlet problem for a
bisingularly perturbed elliptic second order differential equation with two independent variables
in a circle. Moreover, the constructed asymptotic series is a Puiseux series.

The proposed method differs from the method of matching asymptotics by the fact that the
increasing singularities of the external expansion are removed and by means of the series with
coefficients ℎ𝑘 the singularities are moved to the internal expansion.

It should be noted that for simplicity, we have studied here the case 𝑎(𝜌, 𝜙) ≡ 1. The
asymptotic expansion of the solution to the Dirichlet problem for the equation

𝜀∆𝑢(𝜌, 𝜙, 𝜀) − (1 − 𝜌)(𝜌− 𝛼)2𝑎(𝜌, 𝜙)𝑢(𝜌, 𝜙, 𝜀) = 𝑓(𝜌, 𝜙, 𝜀), (𝜌, 𝜙) ∈ 𝐷,

where 𝑎(𝜌, 𝜙) > 0 in domain 𝐷 can be constructed in the same way and it has the same
structure.
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