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Abstract: In the present paper we studied the problem of nonlinear optimal control of the thermal processes described by Fredholm
integro-differential equations when the control parameters are nonlmearly included into the equation as well as into the boundary
condition. The concept ofweak generalized solution ofthe boundary value problem is introduced and the algorithm for its construction
is indicated. It is established that optimal control is defined as the solution ofthe system of nonlinear integral equations which contain
unknown functions under and out ofthe integral and satisfy the additional condition in the form ofthe system o f inequalities. Sufficient
conditions for the existence ofa unique solution ofthe problem ofnonlinear optimization are given, and algorithm of its construction
has been developed.
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1 Introduction 21] and the references therein). However, such problems

were not we 11-investigated in general.

It is well-known that basis ofthe optimal control theory of
processes described by ordinary differential equations was
laid in the 50th years of the 20ih century in the works of
L.S. Pontryagin and his colleagues [13] and basis ofthe
optimal control theory of processes described by partial
derivatives differential equations was laid in the 60th years
ofthe 20th century in the works ofA.G. Butkovskiy [12],

One of the main research method of optimal control
problems is Pontryagin’s maximum (or minimum)
principle which is used in optimal control theory to find
the best possible control for taking a dynamical system
from one state to another, especially in the presence of
constraints for the state or input controls.

A.l. Egorov [6].

Moreover, several processes described by ordinary
and partial differential equations have been studied
extensively by many researchers (see, [16,17,18,19,20,

*Corresponding author e-mail: akl7(g,'cambler.ru

Note that the maximum principle was formulated for
systems with lumped parameters, and it is applicable not
always in the case for systems with distributed parameters

[6].



216 A.

The problem of control processes described by
integro-differential equations with partial derivatives is
often encountered in applications and it has been studied
in papers [6,7,8,9,10]. For example, in [15] investigated
the problem with taking into account the only external
control parameters. When we study of thermal processes,
in practice it is necessary to consider the thermal flow
passing as well as across the border.

In this article, we investigated the questions of unique
solvability of the optimization problem for the thermal
processes described by Fredholm integral-differential
equations when the controlling external forces as well as
boundary control are operated to object , i.e. object is
controlled by two control forces. Such problems have not
yet been studied in control theory. The quality control is
estimated by the quadratic functional. Based on the
maximum principle the conditions of control optimality
for systems with distributed parameters [6] are obtained
in the form of a nonlinear integral equation and
differential inequality. The solvability of the nonlinear
integral equation is studied according to the method of
book [4]. For optimization problems we obtained the
sufficient conditions of the unique solvability and we
indicated an algorithm for constructing solutions of
nonlinear optimization problems with arbitrary precision
Lf the form of ] the triple
wWo(/)Q9°(/))[>0(/Q)cy[«0(0ad0(0]N where
(un(t)\l1d°(l)) is vector optimal control, v°(/Q) is optimal
process, and J[u°(t) GO°(/)] is the minimum value of the
functional.

2 Boundary value problem of the controlled
process

Suppose that the state of a thermal process is described
by the scalar function v(tQ), which satisfies the integro-
differential equation [1,2,3]
Zr
V,= V,,+A K{tn)v(TQ)dT+g(tB)A(Qi(t)] (1)

in the region Q= {0 <x < ID 0<t< T), and on the
boundary of Q it satisfies the initial condition

v(0Q) = iMX)ID<x< 1 (2)

and boundary conditions
yr(/0)) = OQo*m(Go)+ av(m)= p[rn?(r)](0< t < T)0
(3)
where K(I O’) is a given function defined in the region D =
{0 <t< TO 0< r< T) and satisfies the condition

ZrZ

K2(10)dTdt = KQ< «O (4)

o o
i.e., K{tO) 6 //(D); i*(x) e /-/(OCI)D ¢g(tQ) 6 H(Q) are

given functions; INe (/)] e A(0Cr),
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sources
functions
the

p[t\3(I)} 6 /-/(OCT) are functions of external
which nonlinearly depend from the control
u{t) e tf(0O[J)D >9(0 e H(OCT) and satisfy
conditions

on W [(D9(/)]i 00 Ve (0CF);  (5)

A is a parameter; a > 0 is a constant, T is a fixed moment
of time. The Hilbert space of functions defined on the set
Y is denoted by H(Y).

In real-world applications, generalized solutions ol
boundary value problems are used. For the boundary
value problem (1)-(3) we will use the following concepl
ofweak generalized solution.

Definition I.Under a weak generalized solution of the
boundary value problem (I)-(3) we mean the function
v(tQ) e H(Q) which satisfies the integral identity

Z, z,2z,
(vAitdx = [v(<0 - -y + <P(IQ) (6)
O-° z ‘m 0 m]

x A K(tO)v(TQ)dT +g(/Q)/[/a(0] \dxdt
o]

+  [<p(Q)(- ov((D)+ p[t{3()])
i
- <£m(/[O0)v(/D) + <&(/ DD)v(t[$)))di

for anyt2andh, 0<t\ < 1S h S T, andfor anyfunction
q){tQ) e C.]J0Cy), as well as the initial and boundary
conditions in a weak sense, i.e., for any functions
(fo(x) 6 tf(OD) and g=i(t) E /-/(OCX) the following
relations hold

z z

Jmo 0 v(I[Z2)%(x)dx - ’ip(x)%(x)dxo

aT
pLICO(H)]g>\(B)dtO

ZF
lim (yAra)- av(IQ))tp\(t)dt =
—i-O o

lim W((Q)ipi (I)dt - OD ?
Jimy o M(@ipi (1) @
where C1Q(0 is space offunctions which, has the first
derivative with respect to t and the second order
derivative with respect tox.

To construct the solution of boundary value problem

(1)-(3) we use the eigenfunctions and eigenvalues of
boundary problem [6]

2 (x)+ Agz(x) = 0M z (0) = 0D 2 (1)+ az(1)= 0D(K)

Eigenfunctions have the form

cosK<xU n& {\ [2[>K}10 (9)

2,,(x) =
) Af+ a-+ a

and form acomplete orthonormal basis in the Hilbert space
/1(0D). Corresponding eigenvalues are determined as
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a solution of the transcendental equation AtgA = a and
satisfies
AN, +illl

e {1Qno}O limA, = 0O

and
(n- nT1< A,< ~(2n- 1)D (10)

We are looking for the solution of boundary problem
(1-(3) in the form

v(I Q) {z..{x)0 (11)

=1

where
O*x1
Va(l) = vi(Q:) [2.() = 0 v(tQ)z,,(x)dx (12)
are the Fourier coefficients of the function v(t Q). The
symbol < <0 > is used for the scalar product in the
Hilbert space H{OQ). We also use the expansions

g(iby = £9,(/)z,(x)D (13)
n- 1

O o z1
g,.{t) = 9(tQ)Q.,.(x) = og{|{i)2“{x)dXU

w(x)

£%Z,(x)0
=1

. g o_z1
in, = ip(x)B,.(x) = o ip(x)z,,(x)dx[J

According to the method [7], the formal solution ofthe
boundary problem (1)-(3) is found by using the integral
identity (6). By the arbitrariness of function <p(tS) in the
integral identity (6) we assume that (p(IQ) = z,,(x). After
some calculations, the integral identity (6) takes the form

1
]1-2 it < v(/Q)Q .. (x)> +A, <Vv(;Q)B,(x)

Zy
-A K{tct) < v(rB)B,,(x) > dr
° |
- <g(ta)Q,,(x) >f[ta{i)]~ zn(\)P[t[$(1)] dt = on

In this identity by supposingh = t and differentiating
with respect to t, we obtain the integro-differential
equation

v(/Q)Q..(x) > + A; < v(tB)Q..(x) >
Zr
= A 0 K(I0) < v(rQ)Q,,(x) > dT

dt

+ < g(rQ)Q,.(x) > 1'a(0]+ z,(Np[lO?(N]O (14)

which we solve with the initial condition

< v(Q)Q.(x)> |=, =< v(/,Q)Q..(x)> (15)

for each fixed n E {1 C2MNLLL Considering the right side of
the equation as absolute term, we solve the Cauchy
problem (14)-(15) by the formula

< v(tQ)Q,.(x) > =
Al 2 u iZr
0

< v(t\ B)Q,.(x)

+ e-K('-T) g K(TQ) < v{sQ)Q,,(x) > d4
/
' O
+ < g(TQ)Q.,(x) > /1rO/(r)] + r,,( Dp[rGO(r)] drO

Tending/| to zero and taking account of (7), (13) we

obtain the relation
v,,(I) = e A"tp, (b
Z °

+ e "0/ IC(r[I)V1,,(5)rf5
0 0 0o
+gn(T)ATOI(T)]+ z,,(\)p[TU(T)] dr

which is the linear integral equation.
It is easy to see that there is an initial condition

1)) = 100 (17)

We will rewrite equation (16) as

z

y
v,,(t) = A K., (tQ)vlI(s)ds+a,,(i)0 (18)

where z

K.(1Q)= ‘e '~ “ TK(Ta)dTO (19)

an(l) = e A"4J,,+ Oe~"{| n
* (gn( T)f[Ttk( r)] + zn(1)p[T\3{ T)])dTD (20)
We solve integral equation (18) using the following
formula [8,9]
Z-,
v, (I):A,0 R,,(IQCh)a,,(s)ds + a,,(t)0 (21)
where

R.(tQCA)= [jA " IALci(/0)D ne {21  (22)

is the resolvent of the kernel /0,("D) = K,q(iQ), the
iterated kernels K,,a(1Q) are defined by the formula [8,9]
z,
W (/D) = OK,,(tOi)KriAnB)dnne {1QamiD
(23)
for each n e { 1C2QHJ.

Further, as in [15], we have set the radius of
convergence concerning resolvent for any n 6 { I1[2LU |,
as well as proved that the solution ofthe problem (1)-(3)
which defined by (11), (21) is an element ofthe Hilbert
space, i.e. v(;Q) 6 H(Q) for any external control u(t) and
boundary control d(t).
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3 Formulation of optimal control problem
and conditions of optimality

Consider the optimization problem in which it is required
to minimize the quadratic integral functional

z,
Jlumc&()] = [v{TQ)- S(x)]2dx
Zr
+0 [u2«)+ d 2{t)]dl (24)
0

for /3 > OQvhere %(x) e /-/(OD) is given function on the
set o fsolutions of problem (1)-(3), i.e. we need to find the
controls u°(t) e H{OCT) and d°(t) 6 A(OCI) which,
together with the corresponding solution v°(;Q) of
boundary value problem (I)-(3), gives the smallest
possible value of functional (24). In this case u°(t) and
9°(i) are called the optimal controls, and Y °(/in) is the
optimal process.

Since, according to (5) each vector control
(u°(t)Cd°(i)) wuniquely defines the controlled process
v'\t R), then the solution of boundary value problem
(i)-(3) of the form v(/Q)+ Av(tQ) correspond to the
controls uft) + Au(t) and d(t) + Ad(t), where is the
increment that corresponds to the increments Ad(t) and
Au{t). According to the procedure of application of the
maximum  principle [6,10,11], the increment of
functional (24) can be written as

AJ[UES] = J[u+ Au\3+ 45]- J[u\3]
Zy

An[ia/ttoOi&]dt

+ Av2(TQ)dxD (25)
(o]

where

An(ta/aoQ<W) = r(tdaﬂ.+Au(t)rs+ a &)
- n(tQ/aoaix$)D
M(/0/Ck»aa9) = u”Q)pl/G9(N]+ B(u2ft) + d2(t))

+ 0(2a)w(/3)/1<Q«(0]<&D  (26)

w(/[J) is a solution of the conjugate boundary value
problem

Zy
W + Wrv+ K(m)w(Ta)dT= 0DO< x< 1D0< /< TO

UJ(TQ) + 2[v(rS) - ${x)) = O00< jc< 10O
Wr(?QD) = OOpa.(WW) + abl ((0) = 0DO<t< T

and has the form [15]
w(/Q) = -2[v((D - I]

+ N P, (saa)e~A«(r~x)ds z,,(x)O (27)
0

@ 201ANP
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According to the maximum principle for systems with
distributed parameters [6,10,11], the optimal control is
determined by the relations

| 2pu(t) _Z(IQ)Lo(tO)de
fAiIOtiO] 0 28)

I 205(0 W (fD)D
pal‘& (o]
D u(t) o

um)l o, ) «> oD
D df{t) n 29)
pevmt)] . >0

which are called the optimality conditions. The relations
(28) were obtained from the following condition

gradlI([ii{j£)) = OD

The relations (29) were obtained from the system ol the
conditions by elimination ofw (KO) and oj(i0)

gradn(-Ot&) = OD

(ma®) n,5(-a0?)
n,.(-ac0) < od 5’(_@) ra_@) > 0D

4 Nonlinear integral equation of optimal
control

In order to find the optimal control, we use optimality
conditions (28) and (29). We substitute w(/Q) in (28)
with the solution of the conjugate boundary value
problem defined by (27). First, we calculate the integral

Z | Z| «

g{tQ)cj(l1Q)dx = Y 9..(t)z,,(x) Y Uk{t)zii{x)dx
0 0 & *ti

= Tg«(0<M-(0D

[»=!

and rewrite equality (28) in the form

/3« (0rt»(0]= - y bl

i=1
O s Zr O
* e-W -")+/ />, (jlita)e'~, /" )rfs O

0K T - i)

Pd(i)p-3'[ttf(t)]= - 7 i,(i)w n - S

mi Zy ) =
X e-n;cl-o+n />{aa)e-M-("-)n O
0
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According to (12) we further reduce this equality to the

form O
9. ,,D_ L]
po LRSI R IV 3”6)) E.(ma) (30)
Palt&U)] n n
vrow B.mo.n® ARER
b 0
n=1 ™)
where
En(TW) = (31)
+/ «;,(jua)e Ar/" Yy~ d
1., (7ITO) = <[T'(y'~1) (32)
+ nz ’ 12;,(TOCA)e' '@ 110
ho= i= 4fe AT+ A R.(TQa)e-"sds]0 (33)

Thus, the optimal control is defined as the solution of
nonlinear integral equation (30), and the condition (29),
here, must be satisfied. Condition (29) restricts the class
of functions of external actions f[t\jk(l)] and p[tE&(t)].
Therefore, we assume that the functions f[tQ (0] and
[?[/0?(/)] satisfy the (29) for each of the controls
u(t) e /-/(OIT) and d(t) B /-/(OMT).

Nonlinear integral control (30) is solved according to
the method [4,5]. Suppose that

W(/) = 6,(f)D = &(<)3 (34)

pg[l.Co{1)]

Lemma 1.The vectorfunction 6{t) = (0| (t)\$2(t)) is an
element ofspace //2(01T) = A(OCI) x A(OCI).

/-Voo/™According to (5), we have the estimate
sup\f;'[tQi(t)]\ < M\U
sup\p~g '[t{3(i)]\ < Mi

Since u(t) e /-//(OCT) and d(t) e tf(OT), then the

assertion of the lemma comes from the following

inequality

z z
e;(t)cit<p2

V/e[0T]D

L0 \iUt{t)]\2\u{t)\2dt

0 S Bw
2 z °
e2(t)dt < p2 ~ bs'[<c»(/)]|2]#(0]|2n
Zy
< p2m} d2(t)di < «O

u~(l)dt <““EJ

According to (29), the optimal controls u(t) and d(t)
are uniquely determined by equality (34), i.e. there are
functions ¢ and &? such that

M@ = 0i(/DBi(/)gp)D 9(t) = <fc(/ce2(/)[£)D  (35)

Using (34) and (35), we rewrite system of equations (30)
in the form

m +I- S.! ouma)
N, (DR 0 TS i ack
= U £,(racn)A,,n (36)

Introducing the notations

O O O [}

_ 0i(0 gn(*) r
90~ o0 b cow) oz,
O

O m

we rewrite equation (30) in the form

0(0+ T G, (ta)E, (Taa) 1,,(m a)
xg;,(j-d)f (rre, [r®, (r)BAUMTIrceH o a3])<a,r

= ~ C, (/0)7~,(7"13CN)yr,, (37)
i=1

or in the operator form

e(t)= E[e\ (oc>(0] +ap O (38)

where

£[0,(0 [02(0]= - ¥ C,,(/O)E, (7nrn)
=1
zy
L,(ma)c;,(ra)

xF{ T[] [r®| (r) gs]Cfc[rQ2(0 3" rO

7i(0 = TG A(Q)E.(ra)li,D (39)

17=1

Now, we investigate the question of unique solvability
of the operator equation (38).

Lemma 2.The function Ji(t)
H 2{OIT).

is an element of space

@ 2016 NSI”
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Proof. By the straightforward calculations, we obtain the
inequality

Zr , Zvo ]
kTi(t)kl2dt = hat) + h\(t) dt

Z « D2
Yg,,(t)En(Taa)h,,

o .
+ 'yz,,()E.(TaC\)h,I  dt

e 2k
< 2kg((Q)k2 " 14 A g .= AL d

27p- |\] KOT

, , 1 D
* 7T+6 2 k«Mk&+2kvM k&
o , oo
A~KqT 1
X iteq— - N omeeee —2
2A2- |A| A5T-
O
* it eq-— nAny e jr+7 2 KSWkw
2n2- |A| Iror n2
o , m[n]

+2k4J/(xl)4k%-l 1+ eq-= 1[.]_._}5_9.-{, _______ a- T'Il-y
2p—/| aDr In*

!'D N2A" r D
< 2kg(/Q)kZ+ 1 I+ gq-=r— A j——-- =
2/|2- |A] KOT
O
X 2 kE(X)k2+ 2kip(x)\<.B
n2«kor 1 w
X 1+ fIN z —mmeeeee 7=n~r771

< «0O (40)
from which the assertion of lemma is implied.

Lemma i.The operator = £[0|(r)C02(/)] maps the space
[/ (OCI") into itself i.e. is an element of the space
I-12(0D).

Proof. By the straightforward calculations, we obtain the
inequality

zZr
j~rc,(/la)E, (7’aiD\) o L,,(ma)G;,(Ta)

XF(rqOI[rCB,(NABIC elr[?2(T)g8l>rir— o

® 2016 NSI'
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kC7.(/0 )KMET,(74301) |
I

X M TOD\)|kc;,(rD)k,,2

0
02

x 4F(rqQI[r[Bi(r)gplafc[r[je2(T)qp]) CHrfr dt
< |MKC,,(W)K22E,,(7’all) |2

x V “1Z,,(ma)|2kG*(rD)k2jf/r
r\ 0
X 0 Lp( redp, [r[©] (1) [/3]Cch.[WLO,( r) r/3])L
=] 0,

< kg(/H)kZ + 2
1 1

N2KOT | |
X 1+ eq—— ———T7 & 7T+ 7.

2/p - 1Al i?of

x O/ [0, (Oed] &H + Sp° gfc[/ ce, (0 3| L&,

< “Q (41)

from which the assertion of lemma is implied.

Lemma 4.Suppose that the conditions

Aa(0]1-71 K 0]B H(.a)

< /ch (O -k(')0, (0a)n /0> od (42)
0p[/c5(0]-p[~(O]°W.u-)
S /A (/)-3 (0B nu(0ala Po> OD (43)

>[/UL (0B A- ® /Ne (/)Ne,,((,Om>
< (b,OBe,(/)-e,(,)BH(OD)qﬂ MNiz)>o0a /= in (44)

are satisfied. When the condition

O oo I
Y= kg(/Q)k7/+2 —T +
9(/Q) At e
<]Kq
Sqg- ~3 i-b
2Af"|A| Ko7
0 0
xB/oQ>ol*io(j8)gho(P) (45)

« we/, /ie operator £[6] is contractive.



Appl. Malh. Inf. Sci. 10, No. I, 215-223 (2016) www.naturalspublishing.com/Journals.asp 221

Proof.By the straightforward calculations, we obtain the
inequality

Z .

1.101- E[6i |y Y G, (ia)E, (Taa)

, 1,(roa)G; (rng ééf@@ ! rrigla ar

-y c,ma)En{Tw) L,(ma)GUTa)

' OoQg " m O
X [cfqf.tr®,(0CP]D d
p rcfc[r[02(r)[p]
z
<, Vofag(rion’ 1 raa)o;(ra)
L Cb
/ ch»l[r[BI(r)[p]D— / [|C*I[r(]B|(T)[p]n .
p FCO2[TcO2(T)C/3] - P 7-[#b[T[02(r)[p]
D _
< kg(/Q)k2+ 2 TT+7?
6

alKv
X |1+ oq- L

2Af- |/] KOT
x ul®al/ce (/) [p]

PO O O b a
+Upinkbahwrp] ~p /qfc['C02(0qg3] u*

1o o>, ()

O Cb s r
< kg(/Q)kly + 2 A+ -

20,2~ |N| fcor

Jo®ro(/3)BO,(/) - 0,(0 &

+P~10(/3)Oe2(0 - 02(0ft

Cb

< kg(/Q)kx+ 2 ST +

alko
Og- \1 Df
2Af- [N KQT

~Nodg,al)lo(/3)ch20(P)[™ (0 - 0(0&W
< «Od (46)

where

B1 /oL4*, Ch,O(P)DMP)°= m a x 5 Opj0(p)OpUP) ~

and from the inequality we find that

O
b[6]-£[B]- BA22 Dkg(/Q)k-;/+ 2
alKo
trm == . a

2/f'M 1 K(7-

xg/oD[?;ocqa|o(|3)cqazo(/3) %((Ge 9601

= /06(0 - ~0(OUW< -O

Theorem 1.Suppose that conditions (4) - (5), (29), (42) -
(45) are satisfied. Then the operator equation (38) has a
unique solution in the space TI2(0CT).

ProofAccording to Lemmas / and 3, operator equation
(38) could be investigated in the space /-/’(0U").
According to Lemma 4, operator E[Q] is contractive.
Since the Hilbert space H2(0CI) is a complete metric
space, according to contraction mapping theorem [12],
the operator £[6] has a unique fixed point, i.e. operator
equation (38) has a unique solution.

The solution of operator equation (38) can be found
by the method of successive approximations, i.e. k'h
approximation of the solution is found by the formula

8*(0 = £[0*-,(0]0 /16 { 1ELLCWISLL

where 6b(0 is an arbitrary element ofthe space /-/(OCT),
and we obtain the estimate

00(0- 0*(oBpg a )
< X.b[6b(0]+B A4 - ft(00,2(ocnD

which, by the arbitrariness of the 03(O when Qo(t) = Ti(t),
has the form

00(0- O O % oan

The exact solution 0(0 could be found as the limit ofthe
approximate solutions 6*(0> i-e->

0(0 Jim, 0<(0D

Substituting 0, (/) and 02(0 in (35) with this solution,
we find the required optimal controls

ue(t) =
d°(t) = $h2(n392(0/3)a (47)

i (/CBi (0CJ3)D

The optimal process v°(/B), which is the solution of
boundary value problem (I)-(3) that corresponds to the
optimal controls u°(t) and d°(t), according to (6),
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(1 1)-(12) is found by the formula
oz O
v (tOt) A R,,(tOCh)an(s)ds + a,,(t) zn(x)

D , Zr D
W, <rK"K R, (toa)e~"sds

Z)

A,,(1Ma) gn(T)f[ru°(T)]

O
+z,()p[rQ>u(r)] dr z,(x)O (48)

where

g-tfc-n+ A Rr(tQ(l)e~A's"' T)dsO

0< r<tog
A.(1cru

K 1 /?,,(/QD\)e* JT(+ r)dsU

t< t< TO

The minimum value ofthe functional (24) is calculated
by the formula

4U’(O Ol (ve(ra)- zoj2dx
Zl
B U2+ [9\1)2 QitU (49)

triple
's the solution of

g The obtained q
(u0(/)Ci?0(0)O 0(JI3)Cy[u0(;)[-50(0]
the nonlinear optimization problem.
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